Skip to main content
Log in

Stochastic One-Dimensional Lorentz Gas on a Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a one-dimensional stochastic Lorentz gas where a light particle moves in a fixed array of nonidentical random scatterers arranged in a lattice. Each scatterer is characterized by a random transmission/reflection coefficient. We consider the case when the transmission coefficients of the scatterers are independent identically distributed random variables. A symbolic program is presented which generates the exact velocity autocorrelation function (VACF) in terms of the moments of the transmission coefficients. The VACF is found for different types of disorder for times up to 20 collision times. We then consider a specific type of disorder: a two-state Lorentz gas in which two types of scatterers are arranged randomly in a lattice. Then a lattice point is occupied by a scatterer whose transmission coefficient is η with probability p or η+ε with probability 1−p. A perturbation expansion with respect to ε is derived. The ε2 term in this expansion shows that the VACF oscillates with time, the period of oscillation being twice the time of flight from one scatterer to its nearest neighbor. The coarse-grained VACF decays for long times like t −3/2, which is similar to the decay of the VACF of the random Lorentz gas with a single type of scatterer. The perturbation results and the exact ones (found up to 20 collision times) show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Ernst and A. Weyland, Phys. Lett. 34A:39 (1971).

    Google Scholar 

  2. L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys. 78:479 (1981).

    Google Scholar 

  3. H. van Beijeren, Rev. Mod. Phys. 54:195 (1982).

    Google Scholar 

  4. J. Machta and R. Zwanzig, Phys. Rev. Let. 50:1959 (1983).

    Google Scholar 

  5. J. P. Bouchaud and P. Le Doussal, J. of Stat. Phys. 41:225 (1985).

    Google Scholar 

  6. A. Zacharel, T. Geisel, J. Nierwetberg, and G. Radons, Phys. Let. A. 114:315 (1986).

    Google Scholar 

  7. P. Gaspard and G. Nicolis, Phys. Rev. Let. 65:1693 (1990).

    Google Scholar 

  8. P. M. Bleher, J. of Stat. Phys. 66:315 (1992).

    Google Scholar 

  9. H. van Beijeren and J. R. Dorfman, Phys. Rev. Let. 74:4412 (1995).

    Google Scholar 

  10. Matsuoka and R. F. Martin, J. of Stat. Phys. 88:81 (1997).

    Google Scholar 

  11. P. Levitz, Europhys. Lett. 39:593 (1997).

    Google Scholar 

  12. E. Barkai, V. Fleurov, and J. Klafter (1998), submitted.

  13. P. Grassberger, Physica A 103:558 (1980).

    Google Scholar 

  14. H. van Beijeren and H. Spohn, J. Stat. Phys. 31:231 (1983).

    Google Scholar 

  15. C. Olesky, J. Phys. A. Math. Gen. 23:1275 (1990).

    Google Scholar 

  16. P. M. Binder and D. Frenkel, Phys. Rev. A. 42:2463 (1990).

    Google Scholar 

  17. C. B. Briozzo, C. E. Budde, and M. O. Caceres, Physica A. 160:225 (1989).

    Google Scholar 

  18. J. M. F. Gunn and M. Ortuño, J. Phys. A. Math. 18:1095 (1985).

    Google Scholar 

  19. M. H. Ernst and G. A. van Velzen, J. Stat. Phys. 57:455 (1989).

    Google Scholar 

  20. H. van Beijeren and M. H. Ernst, J. Stat. Phys. 70:793 (1993).

    Google Scholar 

  21. E. G. D. Cohen and F. Wang, J. Stat. Phys. 81:445 (1995).

    Google Scholar 

  22. F. Wang and E. G. D. Cohen, J. Stat. Phys. 81:467 (1995).

    Google Scholar 

  23. M. H. Ernst, J. R. Dorfman, R. Nix, and D. Jacobs, Phys. Rev. Let. 74:4416 (1995).

    Google Scholar 

  24. C. Apert, C. Bokel, J. R. Dorfman, and M. H. Ernst, Physica D 103:357 (1997).

    Google Scholar 

  25. S. Wolfram, Mathematica A System for Doing Mathematics by Computer (Addison–Wesley Publishing Company, Inc., New York, Amsterdam, Tokyo 1988).

    Google Scholar 

  26. J. W. Haus and K. W. Kehr, Physics Report 150:263 (1987).

    Google Scholar 

  27. G. Doetch, Guide to the Applications of the Laplace and Z transforms (Van Nostrand Reinhold Company, London, 1971).

    Google Scholar 

  28. R. Zwanzig, J. Stat. Phys. 28:127 (1982).

    Google Scholar 

  29. P. J. H. Denteneer and M. H. Ernst, Phys. Rev. B 29:1755 (1984).

    Google Scholar 

  30. H. Scher and M. Lax, Phys. Rev. B 7:4491 (1973).

    Google Scholar 

  31. H. Scher and M. Lax, Phys. Rev. B 7:4502 (1973).

    Google Scholar 

  32. H. Scher and E. W. Montroll, Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  33. G. H. Weiss, Aspects and Applications of the Random Walk (North Holland, Amsterdam, 1994).

    Google Scholar 

  34. http://www.tau.ac.il:81/cc/

  35. J. W. Haus and K. W. Kehr, J. Phys. Chem. Solids 40:1019 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkai, E., Fleurov, V. Stochastic One-Dimensional Lorentz Gas on a Lattice. Journal of Statistical Physics 96, 325–359 (1999). https://doi.org/10.1023/A:1004532702233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004532702233

Navigation