Skip to main content
Log in

On the Specific Heat of Fermi–Pasta–Ulam Systems and Their Glassy Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The specific heat of Fermi–Pasta–Ulam systems has until now been estimated through the energy fluctuations of a suitable subsystem, and opposite answers were apparently provided concerning its possible vanishing for vanishing temperatures. In the present paper a more “realistic” numerical implementation of the specific heat measurement is discussed, which mimics the interaction of the FPU system with a calorimeter. It is found that there exists a “freezing” critical temperature below which the relaxation times to equilibrium between FPU system and calorimeter become relevant, so that the system presents aging and hysteresis features very similar to those familiar in glasses and spin glasses. In particular, in the framework of such a point of view involving finite long times, the specific heat appears to vanish for vanishing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, Phys. Rev. A 2:2013 (1970).

    Google Scholar 

  2. G. Benettin, Ordered and chaotic motions in dynamical systems with many degrees of freedom, in Molecular-Dynamics Simulation of Statistical Mechanical Systems, G. Ciccotti and W. G. Hoover, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  3. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, Phys. Rev. A 31:1039 (1985).

    Google Scholar 

  4. R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, Phys. Rev. A 31:2740 (1985).

    Google Scholar 

  5. L. Galgani, The quest for Planck's constant in classical physics, in Probabilistic Methods in Mathematical Physics, F. Guerra, M. Loffredo, and C. Marchioro, eds. (World Scien-tific, Singapore, 1992).

    Google Scholar 

  6. M. Pettini and M. Landolfi, Phys. Rev. A 41:768–783 (1990).

    Google Scholar 

  7. L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E 54:5969–5984 (1996).

    Google Scholar 

  8. R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, J. Stat. Phys. 48:539 (1987).

    Google Scholar 

  9. A. Perronace and A. Tenenbaum, Classical specific heat of an atomic lattice at low temperature, revisited, Phys. Rev. E 57, No. 1 (1998).

    Google Scholar 

  10. M. Born, W. Heisenberg, and P. Jordan, Zur Quantenmechanik, Z. Phys. 35:557–615 (1926); translated in B. L. van der Waerden, Sources of Quantum Mechanics (Dover, New York, 1968).

    Google Scholar 

  11. H. Poincaré, Revue Générale des Sciences Pures et Appliquées 5:513–521 (1894), in Oeuvres X, pp. 246–263.

    Google Scholar 

  12. H. Poincaré, J. Phys. Théor. Appl. 5:5–34 (1912), in Oeuvres IX, pp. 626–653.

    Google Scholar 

  13. W. Thomson (Lord Kelvin), Works, pp. 646–648.

  14. G. Parisi, in Workshop on Statistical Mechanics (Parma University, 1996), unpublished.

  15. G. Benettin, A. Carati, and G. Gallavotti, A rigorous implementation of the Jeans– Landau–Teller approximation for adiabatic invariants, Nonlinearity 10:479–505 (1997).

    Google Scholar 

  16. G. Benettin, L. Galgani, and A. Giorgilli, Comm. Math. Phys. 121:557 (1989).

    Google Scholar 

  17. W. Götze, Aspects of structural glass transitions, in Les Houches School, session LI, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991).

    Google Scholar 

  18. R. G. Palmer, Adv. Phys. 31:669 (1982).

    Google Scholar 

  19. J. H. Jeans, The Dynamical Theory of Gases, 2nd Ed. (Cambridge University Press, Cambridge, 1916), see p. 374. Notice that the relevant chapter was eliminated in the subsequent editions.

    Google Scholar 

  20. L. D. Landau and E. Teller, Physik. Z. Sowjetunion 10:34 (1936), in Collected Papers of L. D. Landau, D. ter Haar, ed. (Pergamon Press, Oxford, 1965), p. 147.

    Google Scholar 

  21. A. Carati, G. Benettin, and L. Galgani, Towards a rigorous treatment of the Jeans–Landau–Teller method for the energy exchanges of harmonic oscillators, Comm. Math. Phys. 150:331–336 (1992).

    Google Scholar 

  22. T. M. O'Neil and P. G. Hjorth, Collisional relaxation of strongly magnetized pure electron plasma, Phys. Fluids 28:3241–3252 (1985).

    Google Scholar 

  23. T. M. O'Neil, P. G. Hjorth, B. Beck, J. Fajans, and J. H. Malmberg, Collisional relaxation of strongly magnetized pure electron plasma (theory and experiment), in Strongly Coupled Plasma Physics (North-Holland, Amsterdam, 1990), p. 313.

    Google Scholar 

  24. G. Benettin and P. Hjorth, Collisional approach to statistical equilibrium in a 1-d model, J. Stat. Phys., in print.

  25. K. A. Fisher and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  26. L. Boltzmann, Nature 51:413 (1895).

    Google Scholar 

  27. L. Boltzmann, Lectures on Gas Theory, translated by S. G. Brush, University of Cal. Press (1966); see especially Section 45, Comparison with Experiments.

  28. J. H. Jeans, Phil. Mag. 6:279 (1903).

    Google Scholar 

  29. J. H. Jeans, Phil. Mag. 10:91 (1905).

    Google Scholar 

  30. G. Benettin, L. Galgani, and A. Giorgilli, Nature 311:444 (1984).

    Google Scholar 

  31. G. Benettin, L. Galgani, and A. Giorgilli, Phys. Lett. A 120:23 (1987).

    Google Scholar 

  32. O. Baldan and G. Benettin, Classical “freezing” of fast rotations: Numerical test of the Boltzmann–Jeans conjecture, J. Stat. Phys. 62:201–219 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carati, A., Galgani, L. On the Specific Heat of Fermi–Pasta–Ulam Systems and Their Glassy Behavior. Journal of Statistical Physics 94, 859–869 (1999). https://doi.org/10.1023/A:1004531032623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004531032623

Navigation