Skip to main content
Log in

A Self-Consistent Ornstein–Zernike Approximation for the Random Field Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend the self-consistent Ornstein–Zernike approximation (SCOZA), first formulated in the context of liquid-state theory, to the study of the random field Ising model. Within the replica formalism, we treat the quenched random field just as another spin variable, thereby avoiding the usual average over the random field distribution. This allows us to study the influence of the distribution on the phase diagram in finite dimensions. The thermodynamics and the correlation functions are obtained as solutions of a set a coupled partial differential equations with magnetization, temperature, and disorder strength as independent variables. A preliminary analysis based on high-temperature and 1/d series expansions shows that the theory can predict accurately the dependence of the critical temperature on disorder strength (no sharp transition, however, occurs for d≤4). For the bimodal distribution, we find a tricritical point which moves to weaker fields as the dimension is reduced. For the Gaussian distribution, a tricritical point may appear for d around 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Natterman and J. Villain, Phase Transition 11:5 (1988).

    Google Scholar 

  2. D. P. Belanger and A. P. Young, J. Magn. Magn. Mater 100:272 (1991).

    Google Scholar 

  3. T. Natterman, in Spin Glasses and Random Fields, A. P. Young, ed. (World Scientific, Singapore, 1997).

    Google Scholar 

  4. T. Schneider and E. Pytte, Phys. Rev. B 15:1519 (1977).

    Google Scholar 

  5. A. Aharony, Phys. Rev. B 18:3318 (1978).

    Google Scholar 

  6. A. P. Young and M. Nauenberg, Phys. Rev. Lett. 54:2429 (1985).

    Google Scholar 

  7. A. T. Ogielski and D. A. Huse, Phys. Rev. Lett. 56:1298 (1986).

    Google Scholar 

  8. H. Rieger and A. P. Young, J. Phys. A 26:5297 (1993).

    Google Scholar 

  9. H. Rieger, Phys. Rev. B 52:6659 (1995).

    Google Scholar 

  10. Y. Shapir and A. Aharony, J. Phys. C 15:1361 (1982).

    Google Scholar 

  11. A. Khurana, F. J. Seco, and A. Houghton, Phys. Rev. Lett. 54:357 (1985); A. Houghton, A. Khurana, and F. J. Seco, Phys. Rev. Lett. 55:856 (1985); Phys. Rev. B 34:1700 (1986).

    Google Scholar 

  12. M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwartz, Phys. Rev. Lett. 71:1569 (1993), Phys. Rev. B 53:6362 (1996).

    Google Scholar 

  13. M. R. Swift, A. J. Bray, A. Maritan, M. Cieplack, and J. R. Banavar, Europhys. Lett. 38:273 (1997).

    Google Scholar 

  14. J.-C. Anglès d'Auriac and N. Sourlas, Europhys. Lett. 39:473 (1997).

    Google Scholar 

  15. J. R. L. de Almeida, and R. Bruinsma, Phys. Rev. B 35:7267 (1987).

    Google Scholar 

  16. M. Mézard and A. P. Young, Europhys. Lett. 18:653 (1992).

    Google Scholar 

  17. M. Mézard and R. Monasson, Phys. Rev. B 50:7199 (1994).

    Google Scholar 

  18. C. De Dominicis, H. Orland, and T. Temesvari, J. Physique I 5:987 (1996).

    Google Scholar 

  19. V. Dotsenko and M. Mézard, preprint cond-mat/9611017.

  20. M. Cagnelli, E. Marinari, and G. Parisi, J. Phys. A 28:3359 (1995).

    Google Scholar 

  21. A. P. Young, J. Phys. A 10:L257 (1977).

    Google Scholar 

  22. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43:744 (1979).

    Google Scholar 

  23. J. S. Hoye and G. Stell, J. Chem. Phys. 67:439 (1977); Mol. Phys. 52:1071 (1984); Int. J. Thermophys. 6:561 (1985).

    Google Scholar 

  24. R. Dickman and G. Stell, Phys. Rev. Lett. 77:996 (1996); D. Pini, G. Stell, and R. Dickman, Phys. Rev. E 57:2862 (1998).

    Google Scholar 

  25. E. Kierlik, M. L. Rosinberg, and G. Tarjus, J. Stat. Phys. 89:215 (1997).

    Google Scholar 

  26. E. Kierlik, M. L. Rosinberg, and G. Tarjus, in preparation.

  27. W. G. Madden and E. D. Glandt, Stat. Phys. 51:537 (1988).

    Google Scholar 

  28. J. A. Given, Phys. Rev. A 45:816 (1992).

    Google Scholar 

  29. J. A. Given and G. Stell, J. Chem. Phys. 97:4573 (1992).

    Google Scholar 

  30. M. L. Rosinberg, G. Tarjus, and G. Stell, J. Chem. Phys. 100:5172 (1994).

    Google Scholar 

  31. G. Stell, Phys. Rev. 184:135 (1969).

    Google Scholar 

  32. E. Pitard, M. L. Rosinberg, G. Stell, and G. Tarjus, Phys. Rev. Lett. 74:4361 (1995).

    Google Scholar 

  33. E. Pitard, M. L. Rosinberg, and G. Tarjus, Molecular Simulation 17:339 (1996).

    Google Scholar 

  34. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 1976).

    Google Scholar 

  35. G. S. Joyce, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green (Academic Press, London, 1972), Vol. 2. p. 375.

    Google Scholar 

  36. H. C. Andersen and D. Chandler, J. Chem. Phys. 57:1918 (1972).

    Google Scholar 

  37. J. L. Lebowitz and J. K. Percus, Phys. Rev. 144:251 (1966).

    Google Scholar 

  38. P. Lacour-Gayet and G. Toulouse, J. Phys. (Paris) 35:425 (1974).

    Google Scholar 

  39. J. Adler, in Annual Review of Computational Physics, D. Stauffer, ed., Vol. IV, p. 241 (1996).

  40. A. Maritan, M. R. Swift, M. Cieplak, M. H. W. Chan, M. W. Cole, and J. R. Banavar, Phys. Rev. Lett. 67:1821 (1991).

    Google Scholar 

  41. J. S. Hoye and A. Borge, preprint.

  42. M. Schwartz and A. Soffer, Phys. Rev. Lett. 55:2499 (1985); Phys. Rev. B 33:2059 (1986).

    Google Scholar 

  43. M. Schwartz, M. Gofman, and T. Nattermann, Physica A 178:6 (1991).

    Google Scholar 

  44. See, e.g., J. M. Luck, Systèmes désordonnés unidimensionnels, Collection Aléa Saclay (1992).

  45. J. S. Hoye and G. Stell, Physica A 244:176 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kierlik, E., Rosinberg, M.L. & Tarjus, G. A Self-Consistent Ornstein–Zernike Approximation for the Random Field Ising Model. Journal of Statistical Physics 94, 805–836 (1999). https://doi.org/10.1023/A:1004526931714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004526931714

Navigation