Skip to main content
Log in

The Computational Complexity of Sandpiles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Given an initial distribution of sand in an Abelian sandpile, what final state does it relax to after all possible avalanches have taken place? In d≥3, we show that this problem is P-complete, so that explicit simulation of the system is almost certainly necessary. We also show that the problem of determining whether a sandpile state is recurrent is P-complete in d≥3, and briefly discuss the problem of constructing the identity. In d=1, we give two algorithms for predicting the sandpile on a lattice of size n, both faster than explicit simulation: a serial one that runs in time \(\mathcal{O}\)(n log n), and a parallel one that runs in time \(\mathcal{O}\)(log3 n), i.e., the class NC 3. The latter is based on a more general problem we call additive ranked generability. This leaves the two-dimensional case as an interesting open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59:381–384 (1987).

    Google Scholar 

  2. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38:364–374 (1988).

    Google Scholar 

  3. J. Bitar and E. Goles, Parallel chip firing games on graphs, Theor. Comput. Sci. 92:291–300 (1992).

    Google Scholar 

  4. A. Condon, A theory of strict P-completeness, STACS 1992, in Lecture Notes in Computer Science 577:33–44 (1992).

  5. M. Creutz, Abelian sandpiles, Computers in Physics 5:198–203 (1991).

    Google Scholar 

  6. A. L. Delcher and S. Rao Kosaraju, An NC algorithm for evaluating monotone planar circuits, SIAM J. Comput. 24(2):369–375 (1995).

    Google Scholar 

  7. D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64:1613–1616 (1990).

    Google Scholar 

  8. D. Dhar, P. Ruelle, S. Sen, and D.-N. Verma, Algebraic aspects of Abelian sandpile models, J. Phys. A 28:805 (1995).

    Google Scholar 

  9. L. M. Goldschlager, A space efficient algorithm for the monotone planar circuit value problem, Information Processing Letters 10(1):25–27 (1980).

    Google Scholar 

  10. E. Goles and M. A. Kiwi, Games on line graphs and sand piles, Theor. Comput. Sci. 115:321–349 (1993).

    Google Scholar 

  11. E. Goles and M. Margenstern, Sand pile as a universal computer, Internat. J. Mod. Phys. C7:113 (1996).

    Google Scholar 

  12. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel Computation: P-Completeness Theory (Oxford University Press, 1995).

  13. D. Griffeath and C. Moore, Life without death is P-complete, Complex System 10:437–447 (1996).

    Google Scholar 

  14. W. Hordijk, M. Mitchell, and J. P. Crutchfield, Mechanisms of emergent computation in cellular automata, In Parallel Problem Solving in Nature V, Eben, Beck, Schoenaur, and Schwefel, eds. (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  15. K. Lindgren and M. G. Nordahl, Universal computation in simple one-dimensional cellular, automata, Complex Systems 4:299–318 (1990).

    Google Scholar 

  16. J. Machta, The computational complexity of pattern formation, J. Stat. Phys. 70:949 (1993).

    Google Scholar 

  17. J. Machta and R. Greenlaw, The parallel complexity of growth models, J. Stat. Phys. 77:755 (1994).

    Google Scholar 

  18. J. Machta and R. Greenlaw, The computational complexity of generating random fractals, J. Stat. Phys. 82:1299 (1996).

    Google Scholar 

  19. S. N. Majumdar and D. Dhar, Equivalence between the abelian sandpile model and the q→0 limit of the Potts model, Physica A 185:129 (1992).

    Google Scholar 

  20. P. B. Miltersen, Two notes on the computational complexity of one-dimensional sandpiles, BRICS Technical Report RS-99-3.

  21. C. Moore, Quasi-linear cellular automata, Physica D 103:100–132 (1997), Proceedings of the International Workshop on Lattice Dynamics.

    Google Scholar 

  22. C. Moore, “Non-Abelian cellular automata, ” Santa Fe Institute Working Paper 95-09-081, and “Predicting non-linear cellular automata quickly by decomposing them into linear ones, ” Pkysica D 111:27–41 (1998).

    Google Scholar 

  23. C. Moore and M. G. Nordahl, “Predicting lattice gases is P-complete, ” Santa Fe Institute Working Paper 97-04-034.

  24. C. Moore, Majority-vote cellular automata, Ising dynamics, and P-completeness, J. Stat. Phys. 88(3–4):795–805 (1997).

    Google Scholar 

  25. K. Moriarty and J. Machta, The computational complexity of the Lorentz lattice gas, J. Stat. Phys. 87:1245 (1997).

    Google Scholar 

  26. K. Moriarty, J. Machta, and R. Greenlaw, Optimized parallel algorithm and dynamic exponent for diffusion-limited aggregation, Phys. Rev. E 55:6211 (1997).

    Google Scholar 

  27. C. H. Papadimitriou, Computational Complexity (Addison-Wesley, 1994).

  28. K. Regan and H. Vollmer, Gap languages and log-time complexity classes, Theor. Comput. Sci. 188:101–116 (1997).

    Google Scholar 

  29. H. Yang, “An NC algorithm for the general planar monotone circuit value problem, ” in Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing (1991), pp. 196–203.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, C., Nilsson, M. The Computational Complexity of Sandpiles. Journal of Statistical Physics 96, 205–224 (1999). https://doi.org/10.1023/A:1004524500416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004524500416

Navigation