Skip to main content
Log in

Exact Solution of a Cellular Automaton for Traffic

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an exact solution of a probabilistic cellular automaton for traffic with open boundary conditions, e.g., cars can enter and leave a part of a highway with certain probabilities. The model studied is the asymmetric exclusion process (ASEP) with simultaneous updating of all sites. It is equivalent to a special case (v max=1) of the Nagel–Schreckenberg model for highway traffic, which has found many applications in real-time traffic simulations. The simultaneous updating induces additional strong short-range correlations compared to other updating schemes. The stationary state is written in terms of a matrix product solution. The corresponding algebra, which expresses a system-size recursion relation for the weights of the configurations, is quartic, in contrast to previous cases, in which the algebra is quadratic. We derive the phase diagram and compute various properties such as density profiles, two-point functions, and the fluctuations in the number of particles (cars) in the system. The current and the density profiles can be mapped onto the ASEP with other time-discrete updating procedures. Through use of this mapping, our results also give new results for these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Schreckenberg and D. E. Wolf (eds.), Traffic and Granular Flow '97 (Springer, Singapore, 1998).

    Google Scholar 

  2. M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E 51:2339 (1995).

    Google Scholar 

  3. L. Santen, unpublished.

  4. B. Chopard, P. O. Luthi, and P.-A. Queloz, Cellular automata model of car traffic in a two-dimensional street network, J. Phys. A: Math. Gen. 29:2325 (1996); B. Chopard, in Traffic and Granular Flow '97 (Springer, Singapore, 1998).

    Google Scholar 

  5. F. Spitzer, Interaction of Markov processes, Advances in Math. 5:246–290 (1970).

    Google Scholar 

  6. T. M. Liggett, Interacting Particle Systems (Springer, 1985).

  7. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).

  8. D. Kandel, E. Domany, and B. Nienhuis, A six-vertex model as a diffusion problem: Derivation of correlation functions, J. Phys. A: Math. Gen. 23:L755 (1990).

    Google Scholar 

  9. G. M. Schütz, Time-dependent correlation functions in a one-dimensional asymmetric exclusion process, Phys. Rev. E 47:4265 (1993).

    Google Scholar 

  10. N. Rajewsky, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion model with sequential update, J. Phys. A: Math. Gen. 29:L305 (1996).

    Google Scholar 

  11. N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion process: Comparison of update procedures, J. Stat. Phys. 92:151 (1998).

    Google Scholar 

  12. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asym-metric exclusion model with open boundaries, J. Stat. Phys. 69:667 (1992).

    Google Scholar 

  13. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen. 26:1493 (1993).

    Google Scholar 

  14. G. Schütz and E. Domany, Phase transitions in an exactly solvable one-dimensional exclusion process, J. Stat. Phys. 72:277 (1993).

    Google Scholar 

  15. H. Hinrichsen, Matrix product ground states for exclusion processes with parallel dynamics, J. Phys. A: Math. Gen. 29:3659 (1996).

    Google Scholar 

  16. A. Honecker and I. Peschel, Matrix-product states for a one-dimensional lattice gas with parallel dynamics, J. Stat. Phys. 88:319 (1997).

    Google Scholar 

  17. A. Schadschneider and M. Schreckenberg, Cellular automaton models and traffic flow, J. Phys. A: Math. Gen. 26:L679 (1993).

    Google Scholar 

  18. H. Fukś, Solution of the density classification problem with two cellular automata rules, Phys. Rev. E 55:2081 (1997).

    Google Scholar 

  19. T. Nagatani, Creation and annihilation of traffic jams in a stochastic exclusion model with open boundaries: A computer simulation, J. Phys. A: Math. Gen. 28:7079 (1995).

    Google Scholar 

  20. M. R. Evans, Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics, J. Phys. A: Math. Gen. 30:5669 (1997).

    Google Scholar 

  21. L. G. Tilstra and M. H. Ernst. Synchronous asymmetric exclusion processes, J. Phys. A: Math. Gen. 31:5033 (1998).

    Google Scholar 

  22. B. Derrida and M. R. Evans, Exact correlation functions in an asymmetric exclusion model with open boundaries, J. Physique I 3:311 (1993).

    Google Scholar 

  23. B. Derrida and M. R. Evans, The asymmetric exclusion model: Exact results through a matrix approach, in ref. 41.

  24. M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Asymmetric exclusion model with two species: Spontaneous symmetry breaking, J. Stat. Phys. 80:69 (1995).

    Google Scholar 

  25. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Exact solution of the totally asymmetric simple exclusion process: Shock profiles, J. Stat. Phys. 73:813 (1993).

    Google Scholar 

  26. K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A: Math. Gen. 29:5375 (1996).

    Google Scholar 

  27. B. Derrida, J. L. Lebowitz, and E. R. Speer, Shock profiles for the asymmetric simple exclusion process in one dimension, J. Stat. Phys. 89:135 (1997).

    Google Scholar 

  28. T. Sasamoto, S. Mori, and M. Wadati, One-dimensional asymmetric exclusion model with open boundaries, J. Phys. Soc. Jpn. 65:2000 (1996).

    Google Scholar 

  29. P. F. Arndt, T. Heinzel, and V. Rittenberg, Stochastic models on a ring and quadratic algebras. The three species diffusion problem, J. Phys. A: Math. Gen. 31:833 (1998).

    Google Scholar 

  30. F. C. Alcaraz, S. Dasmahaptra, and V. Rittenberg, N-species stochastic models with boundaries and quadratic algebras, J. Phys. A: Math. Gen. 31:845 (1998).

    Google Scholar 

  31. V. Karimipour, A Multi-Species Asymmetric Simple Exclusion Process and its Relation to Traffic Flow, preprint cond-mat/9808220.

  32. P. Rujàn, Cellular automata and statistical mechanical models, J. Stat. Phys. 49:139 (1987).

    Google Scholar 

  33. A. Georges and P. le Doussal, From equilibrium spin models to probabilistic cellular automata, J. Stat. Phys. 54:1011 (1989).

    Google Scholar 

  34. J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59:117 (1990).

    Google Scholar 

  35. W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley & Sons, 1968).

  36. F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A: Math. Gen. 29:3375 (1996).

    Google Scholar 

  37. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: Applications to the exclusion process, J. Phys. A: Math. Gen. 30:4513 (1997).

    Google Scholar 

  38. B. Derrida, M. R. Evans, and K. Mallick, Exact diffusion constant of a one dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 79:883 (1995).

    Google Scholar 

  39. M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel, Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonian, Phys. Rev. E 58:2764 (1998).

    Google Scholar 

  40. N. Rajewsky and M. Schreckenberg, Exact results for one dimensional stochastic cellular automata for different types of updates, Physica A 245:139 (1997).

    Google Scholar 

  41. V. Privman (ed.), Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, 1997).

  42. A. B. Kolomeisky, G. M. Schütz, E. B Kolomeisky, and J. P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries, J. Phys. A: Math. Gen. 31:6911 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M.R., Rajewsky, N. & Speer, E.R. Exact Solution of a Cellular Automaton for Traffic. Journal of Statistical Physics 95, 45–96 (1999). https://doi.org/10.1023/A:1004521326456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004521326456

Navigation