Skip to main content
Log in

Singular Limit of a Reaction-Diffusion Equation with a Spatially Inhomogeneous Reaction Term

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study reaction-diffusion equations with a spatially inhomogeneous reaction term. If the coefficient of these reaction term is much larger than the diffusion coefficient, a sharp interface appears between two different phases. We show that the equation of motion of such an interface involves a drift term despite the absence of drift in the original diffusion equations. In particular, we show that the same rich spatial patterns observed for a chemotaxis-growth model can be realized by a system without a drift term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn–Hilliard equation to the Hele–Shaw model, Arch. Rational Mech. Anal. 128:165–205 (1994).

    Google Scholar 

  2. S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27:1084–1095 (1979).

    Google Scholar 

  3. G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31:439–469 (1993).

    Google Scholar 

  4. A. Bonami, D. Hilhorst, E. Logak, and M. Mimura, Singular limit of a chemotaxis-growth model, preprint.

  5. A. Bonami, D. Hilhorst, E. Logak, and M. Mimura, A free boundary problem arising in a chemotaxis model, Free Boundary Problems, Theory and Applications, M. Niezgódka and P. Strzelecki, eds., Pitman Res. Notes in Math. Series 363 (1996).

  6. E. O. Budrene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature 349:630–633 (1991).

    Google Scholar 

  7. X. Chen, Generation and Propagation of Interfaces for Reaction-Diffusion Equations, J. Differential Equations 96:116–141 (1992).

    Google Scholar 

  8. S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci. 56:217–237 (1986).

    Google Scholar 

  9. J. I. Diaz and T. Nagai, Symmetrization in a parabolic-elliptic system related to chemotaxis, Advances in Math. Sciences and Appl. 5:659–680 (1995).

    Google Scholar 

  10. L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45:1097–1123 (1992).

    Google Scholar 

  11. P. C. Fife, “Dynamics of Internal Layers and Diffusive Interfaces, ” CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia (1988).

    Google Scholar 

  12. P. C. Fife and J. B. McLeod, The Approach of Solutions of Nonlinear Diffusion Equations to Travelling Front Solutions, Arch. Rational Mech. Anal. 65:335–361 (1977).

    Google Scholar 

  13. M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23:69–96 (1986).

    Google Scholar 

  14. M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26:285–314 (1987).

    Google Scholar 

  15. M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller–Segel model, J. Math. Biol. 35:177–194 (1996).

    Google Scholar 

  16. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans Amer. Math. Soc. 329:819–824 (1992).

    Google Scholar 

  17. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26:399–415 (1970).

    Google Scholar 

  18. R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh, 111A:69–84 (1989).

    Google Scholar 

  19. M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A 230:499–543 (1996).

    Google Scholar 

  20. M. Mimura, T. Tsujikawa, R. Kobayashi, and D. Ueyama, Dynamics of aggregation patterns in a chemotaxis-diffusion-growth model equation, Forma 8:179–195 (1993).

    Google Scholar 

  21. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Advances in Math. Sciences and Appl. 5:581–601 (1995).

    Google Scholar 

  22. J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49:116–133 (1989).

    Google Scholar 

  23. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101:209–260 (1988).

    Google Scholar 

  24. D. E. Woodward, J. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene, and H. C. Berg, Spatio-temporal patterns generated by Salmonella typhymerium, Biophys. 68:2181–2189 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, KI., Matano, H., Hilhorst, D. et al. Singular Limit of a Reaction-Diffusion Equation with a Spatially Inhomogeneous Reaction Term. Journal of Statistical Physics 95, 1165–1185 (1999). https://doi.org/10.1023/A:1004518904533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004518904533

Navigation