Skip to main content
Log in

Hydrodynamic Limit of Brownian Particles Interacting with Short- and Long-Range Forces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the time evolution of a model system of interacting particles moving in a d-dimensional torus. The microscopic dynamics is first order in time with velocities set equal to the negative gradient of a potential energy term Ψ plus independent Brownian motions: Ψ is the sum of pair potentials, V(r)+γ d J(γr); the second term has the form of a Kac potential with inverse range γ. Using diffusive hydrodynamic scaling (spatial scale γ −1, temporal scale γ −2) we obtain, in the limit γ↓0, a diffusive-type integrodifferential equation describing the time evolution of the macroscopic density profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Bunimovich and Y. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers, Commun. Math. Phys. 78:479–497 (1981).

    Google Scholar 

  2. L. Bunimovich, Y. Sinai, and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Russian Math. Surveys 46(4):47–106 (1991).

    Google Scholar 

  3. A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics 1501 (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  4. J. D. Deuschel and D. W. Stroock, Large Deviations (Academic Press, Inc., Boston, Massachusetts, 1989).

    Google Scholar 

  5. P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics (John Wiley & Sons, New York, 1997).

    Google Scholar 

  6. H. O. Georgii, Canonical Gibbs Measures, Lecture Notes in Mathematics 760 (Springer, Berlin, 1979).

    Google Scholar 

  7. H. O. Georgii and H. Zessin, Large deviations and the maximum entropy principle for marked point random fields, Probab. Theory Relat. Fields 96:177–204 (1993).

    Google Scholar 

  8. H. O. Georgii and H. Zessin, Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction, Probab. Theory Relat. Fields 99:171–195 (1994).

    Google Scholar 

  9. G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions I: macroscopic limits, J. Stat. Phys. 87:37–61 (1997).

    Google Scholar 

  10. G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions II: interface motion, SIAM J. Appl. Math. 58:1707–1729 (1998).

    Google Scholar 

  11. N. Grewe and W. Klein, The Kirkwood-Salsburg equations for bounded stable Kac potential. II. Instability and phase transitions, J. Math. Phys. 18:1735–1740 (1977).

    Google Scholar 

  12. M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Commun. Math. Phys. 118:31–59 (1988).

    Google Scholar 

  13. S. Katz, J. L. Lebowitz, and H. Spohn, Non equilibrium steady state of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys. 34:497–537 (1984).

    Google Scholar 

  14. W. Klein, The glass transition, possible research directions, Computational Materials Science 4:399–344 (1995).

    Google Scholar 

  15. W. Klein, H. Gould, R. A. Ramos, I. Clejan, and A. I. Mel'cuk, Repulsive potentials, clumps and the metastable glass phase, Physica A 205:738–746 (1994).

    Google Scholar 

  16. J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamic behavior, J. Stat. Phys. 51:841–862 (1984).

    Google Scholar 

  17. J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion, J. Stat. Phys. 28:539–556 (1982).

    Google Scholar 

  18. J. L. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Stat. Phys. 29:39–55 (1982).

    Google Scholar 

  19. S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Commun. Math. Phys. 135:355–378 (1991).

    Google Scholar 

  20. S. Olla, S. R. S. Varadhan, and H. T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Commun. Math. Phys. 155:523–560 (1993).

    Google Scholar 

  21. F. Rezakhanlou, Hydrodynamic limit for a system with finite range interactions, Commun. Math. Phys. 129:445–480 (1991).

    Google Scholar 

  22. D. Ruelle, Statistical Mechanics: Rigorous Results, W. A. Benjamin, Inc. (New York/Amsterdam, 1969).

    Google Scholar 

  23. D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18:127–159 (1970).

    Google Scholar 

  24. H. Spohn, Large Scale Dynamics of Interacting Particles, Text and Monographs in Physics (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  25. S. R. S. Varadhan, Scaling limit for interacting diffusions, Commun. Math. Phys. 135:313–353 (1991).

    Google Scholar 

  26. S. R. S. Varadhan and H. T. Yau, Diffusive limit of lattice gas with mixing conditions. Preprint (1997).

  27. H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys. 22:63–80 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttà, P., Lebowitz, J.L. Hydrodynamic Limit of Brownian Particles Interacting with Short- and Long-Range Forces. Journal of Statistical Physics 94, 653–694 (1999). https://doi.org/10.1023/A:1004512807858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004512807858

Navigation