Skip to main content
Log in

Interfacial Profiles Between Coexisting Phases in Thin Films: Cahn—Hilliard Treatment Versus Capillary Waves

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A symmetric binary mixture (A, B) below its critical temperature T c of unmixing is considered in a thin-film geometry confined between two parallel walls, where it is assumed that one wall prefers A and the other wall prefers B. Then an interface between the coexisting unmixed phases is stabilized, which (above the wetting transition temperature) occurs in the center of the film for an average concentration of c=1/2. We consider how the concentration profile c(z) across the thin film depends on the film thickness D. By Monte Carlo simulation of a lattice model for a polymer mixture it is shown that for relatively small D the width of the interface scales like wD, while for larger D a crossover to a behavior w\(\sqrt D \) occurs. This behavior is explained by phenomenological theories: it is shown that the behavior at small D can be understood by a suitable extension of the Cahn—Hilliard “gradient-square”-type theory, while the behavior for large D can be traced back to the behavior of capillary waves exposed to a short-range potential by the walls. Corrections due to fast concentration variations, as they occur in the strong-segregation limit of a polymer mixture, can be accounted for by self-consistent field theory. Subtle problems occur, however, with respect to the proper combination of these theories with the capillary wave approximation, particularly at intermediate values of D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Widom, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds., Academic Press, London (1972), p. 79.

    Google Scholar 

  2. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon, Oxford (1982).

    Google Scholar 

  3. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds., Academic Press, London (1983), p. 1.

    Google Scholar 

  4. D. Jasnow, Rep. Progr. Phys. 47:1059 (1984).

    Google Scholar 

  5. I. C. Sanchez, ed., Physics of Polymer Surfaces and Interfaces. Butterworth–Heinemann, Boston (1992).

    Google Scholar 

  6. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28:258 (1958).

    Google Scholar 

  7. A. Vrij, J. Polym. Sci. Part A2 2:1919 (1968).

    Google Scholar 

  8. E. Helfand and Y. Tagami, J. Chem. Phys. 56: 3592 (1972); 57:1812 (1972).

    Google Scholar 

  9. E. Helfand, J. Chem. Phys. 62:999 (1975); E. Helfand and A. M. Sapse, ibid. 62:1327 (1975).

    Google Scholar 

  10. J. F. Joanny and L. Leibler, J. Phys. (Paris) 39:951 (1978).

    Google Scholar 

  11. J. Noolandi and K. M. Hong, Macromolecules 15:482 (1982); K. M. Hong and J. Noolandi, ibid. 14:727 (1981); 13:1083 (1983).

    Google Scholar 

  12. K. Binder and H. L. Frisch, Macromolecules 17:2924 (1984).

    Google Scholar 

  13. E. Helfand, S. M. Bhattacharjee, and G. H. Fredrickson, J. Chem. Phys. 91:7200 (1989).

    Google Scholar 

  14. G. Gompper and M. Schick, Phys. Rev. Lett. 62:1647 (1989); F. Schmid and M. Schick, Phys. Rev. E 48:1882 (1993).

    Google Scholar 

  15. D. Broseta, G. H. Fredrickson, E. Helfand, and L. Leibler, Macromolecules 23:132 (1990).

    Google Scholar 

  16. K. R. Shull and E. J. Kramer, Macromolecules 23:4769 (1990).

    Google Scholar 

  17. K. R. Shull, ibid. 25:2122 (1991); 26:2346 (1993).

    Google Scholar 

  18. K. R. Shull, A. M. Mayes, and T. P. Russell, Macromolecules 26:3929 (1993).

    Google Scholar 

  19. A. N. Semenov, Macromolecules 26:6617 (1993); 27:2732 (1994).

    Google Scholar 

  20. D. C. Morse and G. H. Fredrickson, Phys. Rev. Lett. 73:3235 (1994).

    Google Scholar 

  21. M. Müller, K. Binder, and W. Oed, J. Chem. Soc. Faraday Trans. 91:2369 (1995); M. Müller and A. Werner, J. Chem. Phys. 107:10764 (1997).

    Google Scholar 

  22. F. Schmid and M. Müller, Macromolecules 28:8639 (1995).

    Google Scholar 

  23. K. Binder, Acta Polymerica 46:204 (1995).

    Google Scholar 

  24. R. R. Netz, D. Andelman, and M. Schick, Phys. Rev. Lett. 79:1058 (1997).

    Google Scholar 

  25. M. D. Lacasse, G. S. Grest, and A. J. Levine, Phys. Rev. Lett. 80:309 (1998).

    Google Scholar 

  26. A. Werner, F. Schmid, M. Möller, and K. Binder, Phys. Rev. E 59:728 (1998).

    Google Scholar 

  27. F. P. Buff, R. A. Lovell, and F. H. Stillinger, Phys. Rev. Lett. 15:621 (1965).

    Google Scholar 

  28. W. Helfrich, Z. Naturforschung C 28:693 (1979).

    Google Scholar 

  29. S. Dietrich and M. Napiorkowski, Physica A 177:437 (1991); M. Napiorkowski and S. Dietrich, Z. Phys. B 89:263 (1992); Phys. Rev. E 47:1836 (1993); Z. Phys B 97:511 (1995).

    Google Scholar 

  30. E. M. Blokhuis and D. Bedeaux, J. Chem. Phys. 95:6986 (1991); Physica A 184:42 (1992); Mol. Phys. 80:705 (1993).

    Google Scholar 

  31. F. Schmid and K. Binder, Phys. Rev. B 46:13553, 13565 (1992).

    Google Scholar 

  32. J. W. Cahn, J. Chem. Phys. 66:3667 (1977).

    Google Scholar 

  33. C. Ebner and W. F. Saam, Phys. Rev. Lett. 38:1486 (1977).

    Google Scholar 

  34. D. E. Sullivan and M. M. Tela da Gama, in Fluid Interfacial Phenomena, C. A. Croxton, ed., Wiley, New York (1986), p. 45.

    Google Scholar 

  35. M. E. Fisher, J. Chem. Soc. Faraday Trans. II 82:1569 (1986).

    Google Scholar 

  36. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds., Academic Press, London (1988), p. 1.

    Google Scholar 

  37. M. Schick, in Liquids at Interfaces, J. Charvolin, J. F. Joanny, and J. Zinn-Justin, eds., North-Holland, Amsterdam (1990, p. 415).

    Google Scholar 

  38. A. O. Parry, J. Phys. Condens. Matter 8:10761 (1996).

    Google Scholar 

  39. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, Surface Sci. 223:151 (1989).

    Google Scholar 

  40. A. O. Parry and R. Evans, Phys. Rev. Lett. 64:439 (1990).

    Google Scholar 

  41. M. R. Swift, A. L. Owczarek, and J. O. Indekeu, Europhys. Lett. 14:475 (1991).

    Google Scholar 

  42. A. O. Parry and R. Evans, Physica A 181:250 (1992).

    Google Scholar 

  43. K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. Lett. 74:298 (1995); Phys. Rev. E 61:2823 (1995).

    Google Scholar 

  44. C. J. Boulter and A. O. Parry, Phys. Rev. Lett. 74:3403 (1995); Physica A 218:109 (1995); J. Phys. A 29:1873 (1996); A. O. Parry and C. J. Boulter, Physica A 218:77 (1995); Phys. Rev. E 53:6577 (1996).

    Google Scholar 

  45. K. Binder, R. Evans, D. P. Landau and A. M. Ferrenberg, Phys. Rev. E 56:5023 (1995).

    Google Scholar 

  46. A. M. Ferrenberg, D. P. Landau, and K. Binder, Phys. Rev. E 58:3353 (1998).

    Google Scholar 

  47. T. Kerle, J. Klein, and K. Binder, Phys. Rev. Lett. 77:1318 (1996).

    Google Scholar 

  48. A. Werner, F. Schmid, M. Möller, and K. Binder, J. Chem. Phys. 107:8175 (1997).

    Google Scholar 

  49. A. Werner, M. Möller, F. Schmid, and K. Binder, J. Chem. Phys. 110:1221 (1998).

    Google Scholar 

  50. T. Kerle, J. Klein, and K. Binder, Eur. Phys. J. B. 7:401 (1999).

    Google Scholar 

  51. M. Möller and K. Binder, Macromolecules 31:8323 (1998).

    Google Scholar 

  52. M. Stamm and D. W. Schubert, Annu. Rev. Mater. Sci. 25:326 (1995).

    Google Scholar 

  53. M. Sferrazza, C. Xiao, R. A. L. Jones, D. G. Bucknall, J. Webster, and J. Penfold, Phys. Rev. Lett. 78:3693 (1997).

    Google Scholar 

  54. M. Möller and F. Schmid, in Annu. Revs. Comput. Physics VI, p. 59, D. Stauffer, ed., World Scientific, Singapore (1999).

    Google Scholar 

  55. I. Schmidt and K. Binder, J. Phys. (Paris) 46:1631 (1985).

    Google Scholar 

  56. J. S. Wang and K. Binder, J. Chem. Phys. 94:8537 (1991); G. G. Pereira and J. S. Wang, J. Chem. Phys. 104:5294 (1996); 105:3849 (1996).

    Google Scholar 

  57. A. Werner, Dissertation, Johannes Gutenberg Universität Mainz (1998, unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, K., Müller, M., Schmid, F. et al. Interfacial Profiles Between Coexisting Phases in Thin Films: Cahn—Hilliard Treatment Versus Capillary Waves. Journal of Statistical Physics 95, 1045–1068 (1999). https://doi.org/10.1023/A:1004510702716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004510702716

Navigation