Skip to main content
Log in

Wetting-Induced Aggregation of Colloids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

More than two decades ago, in a seminal paper John Cahn proposed scaling arguments for the possibility of a wetting transition in two coexisting fluid phases near the critical point. Since then, Cahn's model has been tested in many fluid systems and further refined by including the real interactions between the fluid and the solid wall. A fascinating consequence of the existence of a wetting transition is the possibility for a transition from weak to strong adsorption in the homogeneous phase. The situation is further enriched in nonstandard geometries having special geometrical constraints. The subject of this review concerns one such situation, where charge-stabilized colloidal particles are suspended in the homogeneous region of a binary liquid mixture. In this case, the preferential adsorption of one of the liquid components on to the colloid surface completely modifies the stability of the particles leading to an aggregation process. Although the exact mechanism underlying the adsorption phenomenon is still debated, it is closely related to the wetting transition. Recent experimental developments concerning the static and dynamic aspects of this phenomenon are reviewed. In addition, the main findings of a theoretical model based on the adsorption-modified electrostatic interactions between the colloidal particles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Cahn, J. Chem. Phys. 66:3667 (1977).

    Google Scholar 

  2. C. Ebner, and W. F. Saam, Phys. Rev. Lett. 38:1486 (1977).

    Google Scholar 

  3. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1988), p. 1.

  4. Liquids at Interfaces, Les Houches Session XLVIII, J. Charvolin, J.-F. Joanny, and J. Zinn-Justin, eds. (North Holland, 1990).

  5. M. P. Gelfand and R. Lipowsky, Phys. Rev. B 36:8725 (1985).

    Google Scholar 

  6. P. J. Upton, J. O. Indekeu, and J. M. Yeomans, Phys. Rev. B 40:666 (1989).

    Google Scholar 

  7. H. T. Dobbs and J. M. Yeomans, J. Phys.: Condens. Matter 4:10133 (1992).

    Google Scholar 

  8. H. T. Dobbs, G. A. Darbellay, and J. M. Yeomans, Europhys. Lett. 18:439 (1992).

    Google Scholar 

  9. D. Beysens, J.-M. Petit, T. Narayanan, A. Kumar, and M. Broide, Ber. Bunsenges Phys. Chem. 98:382 (1994).

    Google Scholar 

  10. D. Beysens and D. Estève, Phys. Rev. Lett. 54:2123 (1985).

    Google Scholar 

  11. V. Gurfein, D. Beysens, and F. Perrot, Phys. Rev. A 40:2543 (1989).

    Google Scholar 

  12. J. S. van Duijneveldt and D. Beysens, J. Chem. Phys. 94:5222 (1991).

    Google Scholar 

  13. P. D. Gallagher and J. V. Maher, Phys. Rev. A 46:2012 (1992); P. D. Gallagher, M. L. Kurnaz, and J. V. Maher, Phys. Rev. A 46:7750 (1992).

    Google Scholar 

  14. T. Narayanan, A. Kumar, E. S. R. Gopal, D. Beysens, P. Guenoun, and G. Zalczer, Phys. Rev. E 48:1989 (1993).

    Google Scholar 

  15. S. R. Kline and E. W. Kaler, Langmuir 10:412, (1994).

    Google Scholar 

  16. Y. Jayalakshmi and E. W. Kaler, Phys. Rev. Lett. 78:1379 (1997).

    Google Scholar 

  17. B. Rathke, H. Grüll, and D. Woermann, J. Colloid Interface Sci. 192:334 (1997).

    Google Scholar 

  18. R. D. Koehler and E. W. Kaler, Langmuir 13:2463 (1997).

    Google Scholar 

  19. M. L. Broide, Y. Garrabos, and D. Beysens, Phys. Rev. E 47:3768 (1993).

    Google Scholar 

  20. T. Narayanan, J.-M. Petit, M. L. Broide, and D. Beysens, Phys. Rev. E 51:4580 (1995).

    Google Scholar 

  21. M. L. Kurnaz and J. V. Maher, Phys. Rev. E 55:572 (1997); ibid 51:5916 (1995).

    Google Scholar 

  22. T. J. Sluckin, Phys. Rev. A 41:960 (1990). See also E. A. Boucher, J. Chem. Soc. Faraday Trans. I 85:2963 (1989).

    Google Scholar 

  23. H. Löwen, Phys. Rev. Lett. 74:1028 (1995).

    Google Scholar 

  24. R. R. Netz, Phys. Rev. Lett. 76:3646 (1996).

    Google Scholar 

  25. T. Gil, J. H. Ipsen, and C. F. Tejero, Phys. Rev. E 57:3123 (1998).

    Google Scholar 

  26. T. Bieker and S. Dietrich, Physica A 252:85 (1998).

    Google Scholar 

  27. M. E. Fisher and P. G. de Gennes, C.R. Acad. Sci. Ser. B 287:207 (1978).

    Google Scholar 

  28. T. W. Burkhardt and E. Eisenriegler, Phys. Rev. Lett. 74:3189 (1995); E. Eisenriegler, and U. Ritschel, Phys. Rev. B 51:13 717 (1995); A. Hanke, F. Schlesener, E. Eisenriegler, and S. Dietrich, Phys. Rev. Lett. 81:1885 (1998).

    Google Scholar 

  29. J.-M. Petit, B. M. Law, and D. Beysens, J. Colloid Interface Sci. 202:441 (1998).

    Google Scholar 

  30. B. M. Law, J.-M. Petit, and D. Beysens, Phys. Rev. E 57:5782 (1998).

    Google Scholar 

  31. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, London, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beysens, D., Narayanan, T. Wetting-Induced Aggregation of Colloids. Journal of Statistical Physics 95, 997–1008 (1999). https://doi.org/10.1023/A:1004506601807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004506601807

Navigation