Skip to main content
Log in

Exponential Mixture Representation of Geometric Stable Distributions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We show that every strictly geometric stable (GS) random variable can be represented as a product of an exponentially distributed random variable and an independent random variable with an explicit density and distribution function. An immediate application of the representation is a straightforward simulation method of GS random variables. Our result generalizes previous representations for the special cases of Mittag-Leffler and symmetric Linnik distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. N. (1992). A multivariate Linnik distribution, Statist. Probab. Lett., 14, 333–336.

    Google Scholar 

  • Anderson, D. N. and Arnold, B. C. (1993). Linnik distributions and processes, J. Appl. Probab., 30, 330–340.

    Google Scholar 

  • Baringhaus, L. and Grubel, R. (1997). On a class of characterization problems for random convex combinations, Ann. Inst. Statist. Math., 49, 555–567.

    Google Scholar 

  • Devroye, L. (1990). A note on Linnik distribution, Statist. Probab. Lett., 9, 305–306.

    Google Scholar 

  • Devroye, L. (1996). Random variate generation in one line code, Proc. Winter Simulation Conference, 265–272, IEEE Press, New York.

    Google Scholar 

  • Erdogan, M. B. (1995). Analytic and asymptotic properties of non-symmetric Linnik's probability densities, Thesis, Department of Mathematics, Bilkent University, Ankara.

    Google Scholar 

  • Kawata, T. (1972). Fourier Analysis in Probability, Academic Press, New York.

    Google Scholar 

  • Klebanov, L. B., Maniya, G. M. and Melamed, J. A. (1984). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, Theory Probab. Appl., 29, 791–794.

    Google Scholar 

  • Klebanov, L. B., Melamed, J. A., Mittnik, S. and Rachev, S. T. (1996). Integral and asymptotic representations of geo-stable densities, Appl. Math. Lett., 9, 37–40.

    Google Scholar 

  • Kotz, S. and Ostrovskii, I. V. (1996). A mixture representation of the Linnik distribution, Statist. Probab. Lett., 26, 61–64.

    Google Scholar 

  • Kotz, S., Ostrovskii, I. V. and Hayfavi, A. (1995). Analytic and asymptotic properties of Linnik's probability densities, I and II, J. Math. Anal. Appl., 193, 353–371, 497–521.

    Google Scholar 

  • Kozubowski, T. J. (1994a). Representation and properties of geometric stable laws, Approximation, Probability, and Related Fields (eds. G. Anastassiou and S. T. Rachev), 321–337, Plenum, New York.

    Google Scholar 

  • Kozubowski, T. J. (1994b). The inner characterization of geometric stable laws, Statist. Decisions, 12, 307–321.

    Google Scholar 

  • Kozubowski, T. J. (1998). Mixture representation of Linnik distribution revisited, Statist. Probab. Lett., 38, 157–160.

    Google Scholar 

  • Kozubowski, T. J. and Rachev, S. T. (1994). The theory of geometric stable distributions and its use in modeling financial data, European Journal of Operational Research, 74, 310–324.

    Google Scholar 

  • Linnik, Yu. V. (1963). Linear forms and statistical criteria, I and II, Selected Translations in Mathematical Statistics and Probability, 3, 1–90.

    Google Scholar 

  • Mittnik, S. and Rachev, S. T. (1991). Alternative multivariate stable distributions and their applications to financial modeling, Stable Processes and Related Topics (eds. S. Cambanis, G. Samorodnitsky and M. S. Taqqu), 107–119, Birkhauser, Boston.

    Google Scholar 

  • Mittnik, S. and Rachev, S. T. (1993). Modeling asset returns with alternative stable distributions, Econometric Rev., 12(3), 261–330.

    Google Scholar 

  • Pakes, A. G. (1992). On characterizations through mixed sums, Austral. J. Statist., 34(2), 323–339.

    Google Scholar 

  • Pakes, A. G. (1998). Mixture representations for symmetric generalized Linnik laws, Statist. Probab. Lett., 37, 213–221.

    Google Scholar 

  • Pillai, R. N. (1990). On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math., 42(1), 157–161.

    Google Scholar 

  • Rachev, S. T. and SenGupta, A. (1993). Laplace-Weibull mixtures for modeling price changes, Management Science, 39(8), 1029–1038.

    Google Scholar 

  • Ramachandran, B. (1997). On geometric stable laws, a related property of stable processes, and stable densities, Ann. Inst. Statist. Math., 49(2), 299–313.

    Google Scholar 

  • Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes, Chapman & Hall, New York.

    Google Scholar 

  • Zolotarev, V. M. (1986). One-Dimensional Stable Distributions, Translations of Mathematical Monographs, Vol. 65 American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kozubowski, T.J. Exponential Mixture Representation of Geometric Stable Distributions. Annals of the Institute of Statistical Mathematics 52, 231–238 (2000). https://doi.org/10.1023/A:1004157620644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004157620644

Navigation