Skip to main content
Log in

Bivariate Sign Tests Based on the Sup, L 1 and L 2 Norms

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The bivariate location problem is considered. The sup, L 1 and L 2 norms are used to construct bivariate sign tests from the univariate sign statistics computed on the projected observations on all lines passing through the origin. The tests so obtained are affine-invariant and distribution-free under the null hypothesis. The sup-norm gives rise to Hodges' test. A class of tests derived from the L 2-norm, with Blumen's test as a member, is seen to be related to a class proposed by Oja and Nyblom (1989, J. Amer. Statist. Assoc., 84, 249-259). The L 1-norm gives rise to a new test. Its asymptotic null distribution is seen to be the same as that of the L 1-norm of a certain normal process related to the standard Wiener process. An explicit expression of its cumulative distribution function is given. A simulation study will examine the merits of the three approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  • Aki, S. and Kashiwagi, N. (1989). Asymptotic properties of some goodness-of-fit tests based on the L 1-norm, Ann. Inst. Statist. Math., 4, 753–764.

    Google Scholar 

  • Bennett, B. M. (1962). On multivariate sign tests, J. Roy. Statist. Soc. Ser. B, 24, 159–161.

    Google Scholar 

  • Blumen, I. (1958). A new bivariate sign test, J. Amer. Statist. Assoc., 53, 448–456.

    Google Scholar 

  • Brown, B. M. and Hettmansperger, T. P. (1989). An Affine Invariant Bivariate Version of the Sign Test, J. Roy. Statist. Soc. Ser. B, 51, 117–125.

    Google Scholar 

  • Brown, B. M., Hettmansperger, T. P., Nyblom, J. and Oja, H. (1992). On certain bivariate sign tests and medians, J. Amer. Statist. Assoc., 87, 127–135.

    Google Scholar 

  • Chakraborty, B., Chauduri, P. and Oja, H. (1998). Operating transformation retransformation on spatial median and angle test, Statist. Sinica, 8, 767–784.

    Google Scholar 

  • Chatterjee, S. K. (1966). A bivariate sign test for location, Ann. Math. Statist., 37, 1771–1782.

    Google Scholar 

  • de Wet, T. and Venter, J. H. (1973). Asymptotic Distributions for Quadratic Forms with Applications to Tests of Fit, Ann. Statist., 1, 380–387.

    Google Scholar 

  • Dietz, J. (1982). Bivariate nonparametric tests for the one-sample location problem, J. Amer. Statist. Assoc., 77, 163–169.

    Google Scholar 

  • Hájek, J. and Šidák, Z. (1967). Theory of Rank Tests, Academic Press, New York.

    Google Scholar 

  • Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks, Wiley, New York.

    Google Scholar 

  • Hettmansperger, T. P. and McKean, J. W. (1998). Robust Nonparametric Statistical Methods, Arnold, London.

    Google Scholar 

  • Hodges, J. L. (1955). A bivariate sign test, Ann. Math. Statist., 26, 523–527.

    Google Scholar 

  • Joffe, A. and Klotz, J. (1962). Null distribution and Bahadur efficiency of the Hodges bivariate sign test, Ann. Math. Statist., 33, 803–807.

    Google Scholar 

  • Johnson, B. McK. and Killeen, T. (1983). An explicit formula for the C.D.F. of the L 1-Norm of the Brownian bridge, Ann. Probab., 11, 807–808.

    Google Scholar 

  • Kac, M. (1946). On the average of a certain Wiener functional and a related limit theorem in calculus of probability, Trans. Amer. Math. Soc., 59, 401–414.

    Google Scholar 

  • Killeen, T. J. and Hettmansperger, T. P. (1972). Bivariate Tests for Location and Their Bahadur Efficiencies, Ann. Math. Statist., 43, 1507–1516.

    Google Scholar 

  • Klotz, J. (1964). Small Sample Power of the Bivariate Sign Tests of Blumen and Hodges, Ann. Math. Statist., 35, 1576–1582.

    Google Scholar 

  • Möttönen, J. and Oja, H. (1995). Multivariate spatial sign and rank methods, J. Nonparametr. Statist., 5, 201–213.

    Google Scholar 

  • Oja, H. and Nyblom, J. (1989). Bivariate sign tests, J. Amer. Statist. Assoc., 84, 249–259.

    Google Scholar 

  • Prakasa Rao, B. L. S. (1987). Asymptotic Theory of Statistical Inference, Wiley, New York.

    Google Scholar 

  • Rice, S. O. (1982). The integral of the absolute value of the pinned Wiener process-calculation of its probability density by numerical integration, Ann. Probab., 10, 240–243.

    Google Scholar 

  • Ryan, T. A., Jr., Joiner, B. L., and Ryan B. F. (1976). Minitab Student Handbook, Minitab Project Inc., University Park, Pa.

    Google Scholar 

  • Shepp, L. A. (1982). On the integral of the absolute value of the pinned Wiener process, Ann. Probab., 10, 234–239.

    Google Scholar 

  • Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Larocque, D., Tardif, S. & van Eeden, C. Bivariate Sign Tests Based on the Sup, L 1 and L 2 Norms. Annals of the Institute of Statistical Mathematics 52, 488–506 (2000). https://doi.org/10.1023/A:1004121503274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004121503274

Navigation