Skip to main content
Log in

On Least Squares Estimation for Stable Nonlinear AR Processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Following a Markov chain approach, this paper establishes asymptotic properties of the least squares estimator in nonlinear autoregressive (NAR) models. Based on conditions ensuring the stability of the model and allowing the use of a strong law of large number for a wide class of functions, our approach improves some known results on strong consistency and asymptotic normality of the estimator. The exact convergence rate is established by a law of the iterated logarithm. Based on this law and a generalized Akaike's information criterion, we build a strongly consistent procedure for selection of NAR models. Detailed results are given for familiar nonlinear AR models like exponential AR models, threshold models or multilayer feedforward perceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1969). Fitting autoregressive models for prediction, Ann. Inst. Statist. Math., 21, 243–247.

    Google Scholar 

  • Attali, J. (1998). Chaines de Markov Stables, PhD thesis, SAMOS, Université Paris I.

  • Borovkov, A. A. (1991). Lyapounov functions and ergodicity of multidimensional Markov chains, Theory Probab. Appl., 36(1), 1–18.

    Google Scholar 

  • Borovkov, A. A. and Korshunov, D. (1994). Ergodicity in a sense of weak convergence, equilibrium-type identities and large deviations for Markov chains, Probability Theory and Mathematical Statistics: Proceedings of the Sixth Vilnius Conference (1993) (eds. B. Grigelionis, J. Kubilius, H. Pragauskas and V. Statulevicius), 89–98, TEV, Vilnius.

    Google Scholar 

  • Cottrell, M., Girard, B., Girard, Y., Mangeas, M. and Muller, C. (1995). Neural modeling for time series: a statistical stepwise method for weight elimination, I.E.E.E. Trans. Neural Networks, 6, 1355–1364.

    Google Scholar 

  • Doukhan, P. and Ghindès, M. (1980). Etude du processus X n = f(X n − 1) + εn, Comptes Rendus Acad. Sci. Paris, I, 290, 921–923.

    Google Scholar 

  • Duflo, M. (1997). Random Iterative Models, Springer, Berlin.

    Google Scholar 

  • Duflo, M., Senoussi, R. and Touati, A. (1990). Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de regression, Ann. Inst. Henri Poincaré, Probab. Stat., 26, 549–566.

    Google Scholar 

  • Gallant, A. R. (1987). Nonlinear Statistical Models, Wiley, New York.

    Google Scholar 

  • Gallant, A. R. and White, H. (1988). A Unified Theory of Estirnation and Inference for Nonlinear Dynamic Models, B. Blackwell, New York.

    Google Scholar 

  • Guyon, X. (1995). Random Fields on a Network-Modeling, Statistics, and Applications, Springer, Berlin.

    Google Scholar 

  • Haggan, V. and Ozaki, T. (1981). Modeling nonlinear random vibrations using an amplititude-dependent autoregressive time series model, Biometrika, 68, 189–196.

    Google Scholar 

  • Hannan, E. J. (1980). The estimation of the order of an ARMA process, Ann. Statist., 8, 1071–1081.

    Google Scholar 

  • Haughton, D. (1991). Consistency of a class of information criteria for model selection in nonlinear regression, Comm. Statist. Theory Methods, 20, 1619–1629.

    Google Scholar 

  • Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City.

    Google Scholar 

  • Klimko, L. and Nelson, P. (1978). On conditional least squares estimation for stochastic processes, Ann. Statist., 6, 629–642.

    Google Scholar 

  • Lai, T. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models, Ann. Statist., 22, 1917–1930.

    Google Scholar 

  • Lai, T. and Lee, C. (1997). Information and prediction criteria for model selection in stochastic regression and arma models, Statist. Sinica, 7, 285–309.

    Google Scholar 

  • Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability, Springer, Berlin.

    Google Scholar 

  • Mokkadem, A. (1987). Sur un modèle autorégressif non linéaire: ergodicité et ergodicité géométrique, J. Time Ser. Anal., 8(2), 195–204.

    Google Scholar 

  • Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression, Ann. Statist., 12, 758–765.

    Google Scholar 

  • Pötscher, B. M. and Prucha, L. R. (1997). Dynamic Nonlinear Econometric Models, Springer. Berlin.

    Google Scholar 

  • Quinn, B. G. (1980). Order determination for a multivariate autoregression, J. Roy. Statist. Soc. Ser. B, 42, 182–185.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model, Ann. Statist., 6, 461–464.

    Google Scholar 

  • Stout, W. (1970). A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahrscheinlichkeitsthor. Verv. Gebiete, 15, 279–290.

    Google Scholar 

  • Tjøstheim, D. (1986). Estimation in nonlinear time series models, Stochastic. Process. Appl., 21, 251–273.

    Google Scholar 

  • Tjøstheim, D. (1990). Nonlinear time series and Markov chains, Adv. in Appl. Prob., 22, 587–611.

    Google Scholar 

  • Tong, H. (1983). Threshold Models in Nonlinear Time Series, Springer, Berlin.

    Google Scholar 

  • Tong, H. (1990). Non-linear Time Series (A Dynamic System Approach), Oxford Univ. Press, New York.

    Google Scholar 

  • Tsay, R. S. (1984). Order selection in nonstationary autoregressive models, Ann. Statist, 12, 1425–1433.

    Google Scholar 

  • White, H. and Domowitz, I. (1984). Nonlinear regression with dependent observations, Econometrica, 52, 143–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yao, JF. On Least Squares Estimation for Stable Nonlinear AR Processes. Annals of the Institute of Statistical Mathematics 52, 316–331 (2000). https://doi.org/10.1023/A:1004117906532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004117906532

Navigation