Skip to main content
Log in

Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let X 1,...,X n be independent observations on a random variable X. This paper considers a class of omnibus procedures for testing the hypothesis that the unknown distribution of X belongs to the family of Cauchy laws. The test statistics are weighted integrals of the squared modulus of the difference between the empirical characteristic function of the suitably standardized data and the characteristic function of the standard Cauchy distribution. A large-scale simulation study shows that the new tests compare favorably with the classical goodness-of-fit tests for the Cauchy distribution, based on the empirical distribution function. For small sample sizes and short-tailed alternatives, the uniformly most powerful invariant test of Cauchy versus normal beats all other tests under discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baringhaus, L. and Henze, N. (1991). A class of consistent tests for exponentiality based on the empirical Laplace transform, Ann. Inst. Statist. Math., 43, 551–564.

    Google Scholar 

  • Baringhaus, L., Gürtler, N. and Henze, N. (2000). Weighted and components of smooth tests of fit, Australian and New Zealand Journal of Statistics, 42 (to appear).

  • Burke, M., Csörgő, M., Csörgő, S. and Révész, P. (1978). Approximations of the empirical process when parameters are estimated, Ann. Probab., 7(5), 790–810.

    Google Scholar 

  • Chernoff, H., Gastwirth, J. and Johns, M. (1967). Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation, Ann. Math. Statist., 38, 52–72.

    Google Scholar 

  • Csörgő, S. (1981). The empirical characteristic process when parameters are estimated, Contributions to probability (eds. J. Gani and V. Rohatgi), 215–230, Academic Press, New York.

    Google Scholar 

  • Csörgő, S. (1983). Kernel-transformed empirical processes, J. Multivariate. Anal., 13, 517–533.

    Google Scholar 

  • D'Agostino, R. and Stephens, M. (1986). Goodness-of-Fit Techniques, Marcel Dekker, New York.

    Google Scholar 

  • Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated, Ann. Statist., 1(2), 279–290.

    Google Scholar 

  • Epps, T. and Pulley, L. (1983). A test for normality based on the empirical characteristic function, Biometrika, 70(3), 723–726.

    Google Scholar 

  • Epps, T. and Pulley, L. (1986). A test of exponentiality vs. monotone-hazard alternatives derived from the empirical characteristic function, J. Roy. Statist. Soc. Ser. B, 48(2), 206–213.

    Google Scholar 

  • Franck, W. (1981). The most powerful invariant test of normal versus Cauchy with applications to stable alternatives, J. Amer. Statist. Assoc., 76(376), 1002–1005.

    Google Scholar 

  • Hájek, J. and Šidák, Z. (1967). Theory of rank tests, Academic Press, New York.

    Google Scholar 

  • Henze, N. (1993). A new flexible class of omnibus tests for exponentiality, Comm. Statist. Theory Methods., 22, 115–133.

    Google Scholar 

  • Henze, N. (1997). Extreme smoothing and testing for multivariate normality, Statist. Probab. Lett., 35, 203–213.

    Google Scholar 

  • Henze, N. and Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality, J. Multivariate Anal., 62(1), 1–23.

    Google Scholar 

  • Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality, Comm. Statist. Theory Methods., 19(10), 3595–3617.

    Google Scholar 

  • Johnson, N., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed., Wiley, New York.

    Google Scholar 

  • Jörgens, K. (1970). Lineare Integraloperatoren, Teubner, Stuttgart.

    Google Scholar 

  • Karatzas, I. and Shreve, S. (1988). Brownian Motion and Stochastic Calculus, Springer, New York.

    Google Scholar 

  • Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent rv's, and the sample df, Z. W. theorie Verw. Geb., 32, 111–131.

    Google Scholar 

  • Meintanis, S. (1997). Goodness-of-Fit tests for Cauchy Distributions Derived from the Empirical Characteristic Function (Preprint). Greece: University of Patras.

    Google Scholar 

  • Serfling, R. (1980). Approximation Theorems of Mathernatical Statistics, Wiley, New York.

    Google Scholar 

  • Stephens, M. (1991). Tests of fit for the Cauchy distribution based on the empirical distribution function, Teck. Report, No. 449, Department of Statistics, Stanford, California.

    Google Scholar 

  • Stigler, S. (1974). Studies in the history of probability and statistics. XXXIII. Cauchy and the witch of Agnesi: An historical note on the Cauchy distribution, Biometrika, 61, 375–379.

    Google Scholar 

  • Widder, D. (1959). The Laplace Transform, 5th ed, Princeton University Press, Princeton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gürtler, N., Henze, N. Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function. Annals of the Institute of Statistical Mathematics 52, 267–286 (2000). https://doi.org/10.1023/A:1004113805623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004113805623

Navigation