Skip to main content
Log in

Nonconservative Estimating Functions and Approximate Quasi-Likelihoods

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The estimating function approach unifies two dominant methodologies in statistical inferences: Gauss's least square and Fisher's maximum likelihood. However, a parallel likelihood inference is lacking because estimating functions are in general not integrable, or nonconservative. In this paper, nonconservative estimating functions are studied from vector analysis perspective. We derive a generalized version of the Helmholtz decomposition theorem for estimating functions of any dimension. Based on this theorem we propose locally quadratic potentials as approximate quasi-likelihoods. Quasi-likelihood ratio tests are studied. The ideas are illustrated by two examples: (a) logistic regression with measurement error model and (b) probability estimation conditional on marginal frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics, 2nd ed., Benjamin/Cummings, Reading, Massachusetts.

    Google Scholar 

  • Barndorff-Nielsen, O. E. (1995). Quasi profile and directed likelihoods from estimating functions, Ann. Inst. Statist. Math., 47, 461–464.

    Google Scholar 

  • Firth, D. (1982). Estimation of voter transition matrices, MSc Thesis, University of London.

  • Fukaya, K. (1995). Electric Field and Vector Analysis, Iwanami Shoten, Tokyo (in Japanese).

    Google Scholar 

  • Fukaya, K. (1996). Analytical Mechanics and Differential Forms, Iwanami Shoten, Tokyo (in Japanese).

    Google Scholar 

  • Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation, Ann. Math. Statist., 31, 1208–1211.

    Google Scholar 

  • Godambe, V. P. (ed.) (1991). Estimating Functions, Clarendon Press, Oxford.

    Google Scholar 

  • Hanfelt, J. J. and Liang, K.-Y. (1995). Approximate likelihood ratios for general estimating functions, Biometrika, 82(3), 461–477.

    Google Scholar 

  • Hanfelt, J. J. and Liang, K.-Y. (1997). Approximate likelihood for generalized linear errors-in-variables models, J. Roy. Statist. Soc. Ser. B, 59(3), 627–637.

    Google Scholar 

  • Irwin, M. C. (1980). Smooth Dynamical Systems, Academic Press, London.

    Google Scholar 

  • Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions 2, Wiley, New York.

    Google Scholar 

  • Kobayashi, S. (1990). Differential Geometry of Connections and Gauge Theory, 3rd ed., Shokabo, Tokyo (in Japanese).

    Google Scholar 

  • Le Cam, L. (1975), Discussion on Efron (1975), Ann. Statist., 3(11), 1223–1224.

    Google Scholar 

  • Li, B. (1993). A deviance function for the quasi-likelihood method, Biometrika, 80(4), 741–753.

    Google Scholar 

  • Li, B. (1996). A minimax approach to consistency and efficiency for estimating equations, Ann. Statist., 24(3), 1283–1297.

    Google Scholar 

  • Li, B. and McCullagh, P. (1994). Potential functions and conservative estimating functions, Ann. Statist., 22(1), 340–356.

    Google Scholar 

  • McCullagh, P. (1983). Quasi likelihood function, Ann. Statist., 11, 59–67.

    Google Scholar 

  • McCullagh, P. (1991). Quasi likelihood and estimating functions, Statistical Theory and Modelling: In Honour of Sir David Cox (eds. D. V. Hinkley, N. Reid and E. J. Snell), 265–268, Chapman & Hall, London.

    Google Scholar 

  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed., Chapman & Hall, London.

    Google Scholar 

  • McLeish, D. L. and Small, C. G. (1992). A projected likelihood function for semiparametric models, Biometrika, 79, 93–102.

    Google Scholar 

  • Nelder, J. A. and Wedderburn, W. M. (1972). Generalized linear models, J. Roy. Statist. Soc. Ser. A, 135(3), 370–384.

    Google Scholar 

  • Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations, Econometrika, 16, 1–32.

    Google Scholar 

  • Siegel, C. L. and Moser, J. (1991). Lectures on Celestial Mechanics, Springer, New York.

    Google Scholar 

  • Small, C. G. and McLeish, D. L. (1994). Hilbert Space Methods in Probability and Statistical Inference, Wiley, New York.

    Google Scholar 

  • Small, C. G. and Yang, Z. (1999). Multiple roots of estimating functions, Canad. J. Statist., 27, (to appear).

  • Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic regression. Ann. Statist., 13(4), 1335–1351.

    Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized linear measurement error models, Biometrika, 74(1), 703–716.

    Google Scholar 

  • Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method, Biometrika, 61(3), 439–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wang, J. Nonconservative Estimating Functions and Approximate Quasi-Likelihoods. Annals of the Institute of Statistical Mathematics 51, 603–619 (1999). https://doi.org/10.1023/A:1004096728035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004096728035

Navigation