Skip to main content
Log in

A Method for Testing Nested Point Null Hypotheses Using Multiple Bayes Factor

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

As a flexible Bayesian test criterion for nested point null hypotheses, asymmetric and multiple Bayes factors are introduced in the form of a modified Savage-Dickey density ratio. This leads to a simple method for obtaining pairwise comparisons of hypotheses in a statistical experiment with a partition on the parameter space. The method is derived from the fact that in general, the asymmetric Bayes factor can be written as the product of the Savage-Dickey ratio and a correction factor where both terms are easily estimated by means of posterior simulation. Analyses of a censored data problem and a serial correlation problem are illustrated for the method. For these cases, the method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis: the irreconcilability of p values and evidence, J. Amer. Statist. Assoc., 82, 112–139.

    Google Scholar 

  • Bertolino, F., Piccinato, L. and Racugno, W. (1995). Multiple Bayes factors for testing hypotheses, J. Amer. Statist. Assoc., 90, 213–219.

    Google Scholar 

  • Chen, M. H. (1992). Importance weighted marginal posterior density estimation, Technical Report 92–22, Purdue University, Department of Statistics, Indiana.

    Google Scholar 

  • Chib, S. (1995). Marginal likelihood from the Gibbs output, J. Amer. Statist. Assoc., 90, 1313–1321.

    Google Scholar 

  • Devroye, L. (1986). Non-uniform Random Variate Generation, Springer, New York.

    Google Scholar 

  • Dickev, J. (1971). The weighted likelihood ratio, linear hypotheses on normal location parameters, Ann. Statist., 42, 204–223.

    Google Scholar 

  • Ferguson, T. S. (1967). Mathematical Statistics, A Decision Theoretic Approach, Academic Press, New York.

    Google Scholar 

  • Gelfand, A. and Dey, D. (1994). Bayesian model choice: asymptotics and exact calculations, J. Roy. Statist. Soc. Ser. B, 56, 501–514.

    Google Scholar 

  • Gelfand, A. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc., 85, 398–409.

    Google Scholar 

  • Gelfand, A. E., Smith, A. F. M. and Lee, T. M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling, J. Amer. Statist. Assoc., 87, 523–532.

    Google Scholar 

  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation, Statist. Sci., 7, 457–511.

    Google Scholar 

  • Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion), Statist. Sci., 7, 473–511.

    Google Scholar 

  • Hsiao, C. K. (1997). Approximate Bayes factors when a mode occurs on the boundary, J. Amer. Statist. Assoc., 92, 656–663.

    Google Scholar 

  • Jeffreys, H. (1961). Theory of Probability, 3rd ed., Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Kass, R. E. and Raftery, A. E. (1995). Bayes factors, J. Amer. Statist. Assoc., 90, 773–795.

    Google Scholar 

  • Lee, P. M. (1988). Bayesian Statistics: An Introduction, Wiley, New York.

    Google Scholar 

  • Lewis, S. M. and Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator, J. Amer. Statist. Assoc., 92, 648–655.

    Google Scholar 

  • Marr, R. L. and Quesenberry, C. P. (1991). A NU test for serial correlation of residuals from one or more regression regimes, Technometrics, 33, 441–457.

    Google Scholar 

  • Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood boostrap, J. Roy. Statist. Soc. Ser. B, 56, 3–48.

    Google Scholar 

  • Ripley, B. (1987). Stochastic Simulation, Wiley, New York.

    Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions, Ann. Statist., 22, 1701–1762.

    Google Scholar 

  • Tierney, L., Kass, R. E. and Kadane, J. B. (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions, J. Amer. Statist. Assoc., 84, 710–716.

    Google Scholar 

  • Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage-Dickey density ratio, J. Amer. Statist. Assoc., 90, 614–618.

    Google Scholar 

  • Verdinelli, I. and Wasserman, L. (1996). Bayes factors, nuisance parameters and imprecise tests, Bayesian Statistics 5 (eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. M. F. Smith), 765–771, Oxford University Press, New York.

    Google Scholar 

  • Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York.

    Google Scholar 

  • Zellner, A. (1987). Comment on ‘Testing precise hypotheses’ by J. O. Berger and M. Delampady, Statist. Sci., 2, 339–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kim, HJ. A Method for Testing Nested Point Null Hypotheses Using Multiple Bayes Factor. Annals of the Institute of Statistical Mathematics 51, 585–602 (1999). https://doi.org/10.1023/A:1003962424859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003962424859

Navigation