Skip to main content
Log in

Analysis of Multi-Unit Variance Components Models with State Space Profiles

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We apply the Kalman Filter to the analysis of multi-unit variance components models where each unit's response profile follows a state space model. We use mixed model results to obtain estimates of unit-specific random effects, state disturbance terms and residual noise terms. We use the signal extraction approach to smooth individual profiles. We show how to utilize the Kalman Filter to efficiently compute the restricted loglikelihood of the model. For the important special case where each unit's response profile follows a continuous structural time series model with known transition matrix we derive an EM algorithm for the restricted maximum likelihood (REML) estimation of the variance components. We present details for the case where individual profiles are modeled as local polynomial trends or polynomial smoothing splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S. J. and Jones, R. H. (1995). Smoothing splines for longitudinal data, Statistics in Medicine, 14, 1235–1248.

    Google Scholar 

  • Ansley, C. F. and Kohn, R. (1985). Estimation, filtering and smoothing in state space models with incompletely specified initial conditions, Ann. Statist., 13, 1286–1316.

    Google Scholar 

  • Ansley, C. F. and Kohn, R. (1990). Filtering and smoothing in state space models with partially diffuse initial conditions, J. Time Ser. Anal., 11, 275–293.

    Google Scholar 

  • De Jong, P. (1988). A cross-validation filter for time series models, Biometrika, 75, 594–600.

    Google Scholar 

  • De Jong, P. (1989). Smoothing and interpolation with the state space model, J. Amer. Statist. Assoc., 84, 1085–1088.

    Google Scholar 

  • De Jong, P. (1991). The diffuse Kalman filter, Ann. Statist., 19, 1073–1083.

    Google Scholar 

  • De Jong, P. and McKinnon, M. (1988). Covariances for smoothed estimates in state space models, Biometrika, 75, 601–602.

    Google Scholar 

  • Hartiey, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis of variance model, Biometrika, 54, 93–108.

    Google Scholar 

  • Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.

    Google Scholar 

  • Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems, J. Amer. Statist. Assoc., 72, 320–340.

    Google Scholar 

  • Jones, R. H. (1993). Longitudinal Data with Serial Correlation: A Stute Space Approach, Chapman Hall, London.

    Google Scholar 

  • Kohn, R. and Ansley, C. F. (1986). Estimation, prediction and interpolation for ARIMA models with missing data. J. Amer. Statist. Assoc., 81, 751–761.

    Google Scholar 

  • Koopman, S. J. (1993). Disturbance smoother for state space models, Biometrika, 80, 117–126.

    Google Scholar 

  • Koopman, S. J. and Shephard, N. (1992). Exact score for time series models in state space form, Biometrika, 79, 823–826.

    Google Scholar 

  • Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data, Biometrics, 38, 963–974.

    PubMed  Google Scholar 

  • Laird, N. M., Lang, N. and Stram, D. (1987). Maximum likelihood computations with repeated measures: application of the EM algorithm, J. Amer. Statist. Assoc., 76, 860–869.

    Google Scholar 

  • Sallas, W. M. and Harville, D. A. (1981). Best linear recursive estimation for mixed linear models, J. Amer. Statist. Assoc., 82, 97–105.

    Google Scholar 

  • Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, Wiley, New York.

    Google Scholar 

  • Tsimikas, J. and Ledolter, J. (1994). REML and best linear unbiased prediction in state space models, Comm. Statist. Theory Methods, 23(8), 2253–2268.

    Google Scholar 

  • Tsimikas, J. and Ledolter, J. (1997). Mixed model representation of state space models: mew smoothing results and their application to REML estimation, Statistica Sinica (forthcoming).

  • Wecker, W. E. and Ansley, C. F. (1983). The signal extraction approach to nonlinear regression and spline smoothing, J. Amer. Statist. Assoc., 78, 81–89.

    Google Scholar 

  • Wilson, D. P. (1995). Longitudinal data analysis for linear Gaussian models with random disturbed-highest-derivative-polynomial subject effects, Statistics in Medicine, 14, 1219–1233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tsimikas, J.V., Ledolter, J. Analysis of Multi-Unit Variance Components Models with State Space Profiles. Annals of the Institute of Statistical Mathematics 50, 147–164 (1998). https://doi.org/10.1023/A:1003405615641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003405615641

Navigation