Skip to main content
Log in

Convex Models of High Dimensional Discrete Data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Categorical data of high (but finite) dimensionality generate sparsely populated J-way contingency tables because of finite sample sizes. A model representing such data by a "smooth" low dimensional parametric structure using a "natural" metric would be useful. We discuss a model using a metric determined by convex sets to represent moments of a discrete distribution to order J. The model is shown, from theorems on convex polytopes, to depend only on the linear space spanned by the convex set—it is otherwise measure invariant. We provide an empirical example to illustrate the maximum likelihood estimation of parameters of a particular statistical application (Grade of Membership analysis) of such a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, A. (1944). The matrices of factor analysis, Proc. Nat. Acad. Sci., 30, 90–95.

    Google Scholar 

  • Bishop, Y., Fienberg, S. and Holland, P. (1975). Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Mass. and London, England.

    Google Scholar 

  • Brondsted, A. (1983). An Introduction to Convex Polytopes, Springer-Verlag, New York.

    Google Scholar 

  • Hahn, H. and Rosenthal, A. (1948). Set Functions, Albuquerque, New Mexico, University of New Mexico Press.

    Google Scholar 

  • Karlin, S. and Shapley, L. S. (1953). Geometry of Moment Spaces, Memoirs of the American Mathematical Society, Providence, RI, American Mathematical Society.

    Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many parameters, Ann. Math. Statist., 27, 887–890.

    Google Scholar 

  • Kleinman, J. C. (1973). Proportions with extraneous variance: Single and Independent samples, J. Amer. Statist. Assoc., 68, 46–54.

    Google Scholar 

  • Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution, J. Amer. Statist. Assoc., 73, 805–811.

    Google Scholar 

  • Lazarsfeld, P. F. and Henry, N. W. (1968). Latent Structure Analysis, Houghton Mifflin, Boston.

    Google Scholar 

  • Little, R. J. A. and Rubin, D. B. (1986). Statistical Analysis with Missing Data, Wiley, New York.

    Google Scholar 

  • Manton, K. G., Woodbury, M. A., Stallard, E., Riggan, W. B., Creason, J. P. and Pellom, A. (1989). Empirical Bayes procedures for stabilizing maps of US cancer mortality rates, J. Amer. Statist. Assoc., 84, 637–650.

    Google Scholar 

  • Manton, K. G., Cornelius, E. S. and Woodbury, M. A. (1995). Nursing home residents: A multivariate analysis of their medical, behavioral, psycho-social, and service use characteristics, Journal of Gerontology: Biological Sciences & Medical Sciences, 50, M242–M251.

    Google Scholar 

  • Nevman, J. and Scott, E. L. (1948). Consistent estimators based on partially consistent observations, Econometrica, 16, 1–32.

    Google Scholar 

  • Orchard, G. and Woodbury, M. A. (1971). A missing information principle: Theory and application, Sixth Berkeley Symposium on Mathematical Statistics and Probability (eds. L. M. LeCam, J. Neyman and E. L. Scott), pp. 697–715, Berkeley, University of California Press, California.

    Google Scholar 

  • Suppes, P. and Zanotti, M. (1981). When are probabilistic explanations possible?, Synthese, 48, 191–199.

    Google Scholar 

  • Tolley, H. D. and Manton, K. G. (1992). Large sample properties of estimates of discrete grade of membership model, Ann. Statist. Math., 44, 85–95.

    Google Scholar 

  • Tsutakawa, R. K., Shoop, G. L. and Marienfeld, C. J. (1985). Empirical bayes estimation of cancer mortality rates, Statistics in Medicine, 4, 201–212.

    Google Scholar 

  • Weyl, H. (1949). The elementary theory of convex polyhedra, Ann. Math. Stud., 24, 3–18.

    Google Scholar 

  • Woodbury, M. A., Manton, K. G. and Tolley, H. D. (1994). A general model for statistical analysis using fuzzy sets: Sufficient conditions for identifability and statistical properties, Inform. Sci., 1, 149–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Woodbury, M.A., Manton, K.G. & Tolley, H.D. Convex Models of High Dimensional Discrete Data. Annals of the Institute of Statistical Mathematics 49, 371–393 (1997). https://doi.org/10.1023/A:1003175232300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003175232300

Navigation