Skip to main content
Log in

Some Methods for Estimation in a Negative-Binomial Model

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

To clarify the advantage of using the quasilikelihood method, lack of robustness of the maximum likelihood method was demonstrated for the negative-binomial model. Efficiency calculations of the method of moments and the pseudolikelihood method in the estimation of extra-Poisson parameters in a negative-binomial model were carried out. Especially when the overdispersion parameter is small, both methods are relatively highly efficient and the pseudolikelihood estimate is more efficient than the method of moments estimate. Two examples of the quasilikelihood analyses of count data with overdispersion are given. The bootstrap method also is applied to the data to illustrate the advantage of the method of moments or pseudolikelihood method in the estimation of the standard errors of the mean parameter estimates under the negative-binomial model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, 2nd International Symposium on Information Theory (eds. B. N. Petrov and F. Csaki), 267–281, Akademia Kiado, Budapest.

    Google Scholar 

  • Breslow, N. E. (1984). Extra-Poisson variation in log-linear models, Appl. Statist., 33, 38–44.

    Google Scholar 

  • Carroll, R. J. and Ruppert, D. (1982). Robust estimation in heteroscedastic linear models., Ann. Statist., 10, 429–441.

    Google Scholar 

  • Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, Chapman and Hall, London.

    Google Scholar 

  • Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion), J. Roy. Statist. Soc. Ser. B, 49, 1–39.

    Google Scholar 

  • Davidian, M. and Carroll, R. J. (1987). Variance function estimation, J. Amer. Statist. Assoc., 82, 1033–1048.

    Google Scholar 

  • Davidian, M. and Carroll, R. J. (1988). A note on extended quasi-likelihood, J. Roy. Statist. Soc. Ser. B, 50, 74–82.

    Google Scholar 

  • Dean, C. B. (1992). Testing for overdispersion in Poisson and binomial regression models, J. Amer. Statist. Assoc., 87, 451–457.

    Google Scholar 

  • Dean, C. B. (1994). Modified pseudo-likelihood estimator of the overdispersion parameter in Poisson mixture models, J. Appl. Statist., 21, 523–532.

    Google Scholar 

  • Dean, C. B., Lawless, J. F. and Willmot, G. E. (1989). A mixed Poisson-inverse-Gaussian regression model, Canad. J. Statist., 17, 171–181.

    Google Scholar 

  • Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman and Hall, London.

    Google Scholar 

  • Firth, D. (1987). On the efficiency of quasi-likelihood estimation, Biometrika, 39, 665–674.

    Google Scholar 

  • Firth, D. (1992). Discussion of the paper: Multivariate regression analysis for categorical data (by Liang, K.-Y., Zeger, S. L. and Qaqish, B.), J. Roy. Statist. Soc. Ser. B, 54, 3–40.

  • Fisher, R. A. (1949). A biological assay of tuberculin, Biometrics, 5, 300–316.

    Google Scholar 

  • Frome, E. L. (1983). The analysis of rates using Poisson regression models, Biometrics, 39, 665–674.

    Google Scholar 

  • Hinde, J. (1982). Compound Poisson regression model, GLIM82: Proc. Internat. Conf. Generalized Linear Models (ed. R. Gilchrist), 109–121, Springer, Berlin.

    Google Scholar 

  • Holford, T. R. (1983). The estimation of age, period and cohort effects for vital rates, Biometrics, 39, 311–324.

    Google Scholar 

  • Hurvich, C. M. and Tsai, C.-H. (1995). Model selection for extended quasi-likelihood models in small samples, Biometrics, 51, 1077–1084.

    Google Scholar 

  • Inagaki, N. (1973). Asymptotic relation between the likelihood estimating function and the maximum likelihood estimator, Ann. Inst. Statist. Math., 25, 1–26.

    Google Scholar 

  • Lambert, D. and Roeder, K. (1995). Overdispersion diagnostics for generalized linear models, J. Amer. Statist. Assoc., 90, 1225–1236.

    Google Scholar 

  • Lawless, J. F. (1987). Negative binomial and mixed Poisson regression, Canad. J. Statist., 15, 209–225.

    Google Scholar 

  • Liang, K.-Y. and McCullagh, P. (1993). Case studies in binary dispersion, Biometrics, 49, 623–630.

    Google Scholar 

  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika, 73, 13–22.

    Google Scholar 

  • Manton, K. G., Woodbury, M. A. and Stallard, E. (1981). A variance components approach to categorical data models with heterogeneous populations: Analysis of spatial gradients in lung cancer mortality rates in North Carolina counties, Biometrics, 37, 259–269.

    Google Scholar 

  • Margolin, B. H., Kaplan, N. and Zeiger, E. (1981). Statistical analysis of the Ames salmonella/microsome test, Proc. Nat. Acad. Sci. U.S.A., 76, 3779–3783.

    Google Scholar 

  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed., Chapman and Hall, London.

    Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models, Econometrica, 50, 1–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Nakashima, E. Some Methods for Estimation in a Negative-Binomial Model. Annals of the Institute of Statistical Mathematics 49, 101–115 (1997). https://doi.org/10.1023/A:1003114706239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003114706239

Navigation