Skip to main content
Log in

Abstract

We show that convergence of intuitive bootstrap distributions to the correct limit distribution is equivalent to a local asymptotic equivariance property of estimators and to an asymptotic independence property in the bootstrap world. The first equivalence implies that bootstrap convergence fails at superefficiency points in the parameter space. However, superefficiency is only a sufficient condition for bootstrap failure. The second equivalence suggests graphical diagnostics for detecting whether or not the intuitive bootstrap is trustworthy in a given data analysis. Both criteria for bootstrap convergence are related to Hájek's (1970, Zeit. Wahrscheinlichkeitsth., 14, 323-330) formulation of the convolution theorem and to Basu's (1955, Sankhyā, 15, 377-380) theorem on the independence of an ancillary statistic and a complete sufficient statistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case, Ann. Statist., 15, 724–731.

    Google Scholar 

  • Basu, D. (1955). On statistics independent of a complete sufficient statistic, Sankhyā, 15, 377–380.

    Google Scholar 

  • Beran, R. (1982). Estimated sampling distributions: the bootstrap and competitors, Ann. Statist., 10, 212–225.

    Google Scholar 

  • Beran, R. (1984). Bootstrap methods in statistics, Jahresber. Deutsch. Math.-Verein., 86, 212–225.

    Google Scholar 

  • Beran, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements, J. Amer. Statist. Assoc., 83, 687–697.

    Google Scholar 

  • Beran, R. (1995). Stein confidence sets and the bootstrap, Statist. Sinica, 5, 109–127.

    Google Scholar 

  • Beran, R. and Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix, Ann. Statist., 13, 95–115 (Correction: Ann. Statist., 15, 470–471).

    Google Scholar 

  • Bickel, P. J. and Freedman, D. F. (1981). Some asymptotic theory for the bootstrap, Ann. Statist., 9, 1196–1217.

    Google Scholar 

  • Bickel, P. J., Götze, F. and von Zwet, W. R. (1997). Bootstrapping fewer than n observations: gains, losses, and remedies for losses, Statist. Sinica, 7 (in press).

  • Bretagnolle, J. (1983). Lois limites du bootstrap de certaines fonctionnelles, Ann. Inst. Henri Poincaré., X9, 281–296.

    Google Scholar 

  • Droste, W. and Wefelmeyer, W. (1984). On Hájek's convolution theorem, Statist. Decisions, 2, 131–144.

    Google Scholar 

  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman and Hall, London.

    Google Scholar 

  • Franke, J. and Härdle, W. (1992). On bootstrapping kernel spectral estimates, Ann. Statist., 20, 121–145.

    Google Scholar 

  • Hájek, J. (1970). A characterization of limiting distributions of regular estimates, Zeit. Wahrscheinlichkeitsth., 14, 323–330.

    Google Scholar 

  • Hájek, J. (1972). Local asymptotic minimax and admissibility in estimation, Proc. Sixth Berkeley Symp. on Math. Statist. Prob. (eds. L. M. LeCam, J. Neyman, and E. M. Scott), Vol. 1, 175–194, Univ. California Press, Berkeley.

    Google Scholar 

  • Hájek, J. and Šidák, Z. (1967). Theory of Rank Tests, Academic Press, New York.

    Google Scholar 

  • Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer, New York.

    Google Scholar 

  • Hjorth, J. S. U. (1994). Computer Intensive Statistical Methods, Chapman and Hall, London.

    Google Scholar 

  • Ibragimov, I. A. and Has'minskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory, Springer, New York.

    Google Scholar 

  • Inagaki, N. (1970). On the limiting distribution of a sequence of estimators with uniformity property, Ann. Inst. Statist. Math., 22, 1–13.

    Google Scholar 

  • Jeganathan, P. (1981). On a decomposition of the limit distribution of a sequence of estimators, Sankhyā Ser. A, 43(1), 26–36.

    Google Scholar 

  • Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations, Ann. Statist., 17, 1217–1241.

    Google Scholar 

  • LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates, Univ. Calif. Pub. Statist., 1, 277–330.

    Google Scholar 

  • LeCam, L. (1956). On the asymptotic theory of estimation and testing hypotheses, Proc. Third Berkeley Symp. on Math. Statist. Prob. (ed. J. Neyman), Vol. 1, 129–156, Univ. California Press, Berkeley.

    Google Scholar 

  • LeCam, L. (1960). Locally asymptotically normal families of distributions, Univ. Calif. Pub. Statist. 3, 27–98.

    Google Scholar 

  • LeCam, L. (1969). Théorie Asymptotique de la Décision Statistique, Univ. Montreal Press.

  • LeCam, L. (1973). Sur les contraintes imposées par les passages à limite usuels en statististique, Bull. Internat. Statist. Inst., 45, 169–180.

    Google Scholar 

  • Lehmann, E. L. (1983). Theory of Point Estimation, Wiley, New York.

    Google Scholar 

  • Mammen, E. (1992). When Does Bootstrap Work? Lecture Notes in Statist., 77, Springer, New York.

    Google Scholar 

  • Munroe, M. E. (1953). Introduction to Measure and Integration, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Pfanzagl, J. (1994). Parametric Statistical Theory, Walter de Gruyter, Berlin.

    Google Scholar 

  • Politis, D. N. and Romano, J. (1992). A general resampling scheme for triangular arrays of α-mixing random variables with application to the problem of spectral density estimation, Ann. Statist., 20, 1985–2007.

    Google Scholar 

  • Putter, H. (1994). Consistency of Resampling Methods, Ph.D. dissertation at Leiden University, The Netherlands.

  • Swanepool, J. W. II. (1986). A note on proving that the (modified) bootstrap works, Comm. Statist. Theory Methods, 15, 3193–3203.

    Google Scholar 

  • Titterington, D. M. (1991). Choosing the regularization parameter in image restoration, Spatial Statistics and Imaging (ed. A. Possolo), IMS Lecture Notes-Monograph Series, 20, 392–402.

  • Welch, B. L. (1937). The significance of the difference between two means when the population variances are unequal, Biometrika, 29, 350–362.

    Google Scholar 

  • Wu, C. F. J. (1986). Jackknife, bootstrap, and other resampling methods in regression analysis (with discussion), Ann. Statist., 14, 1261–1295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Beran, R. Diagnosing Bootstrap Success. Annals of the Institute of Statistical Mathematics 49, 1–24 (1997). https://doi.org/10.1023/A:1003114420352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003114420352

Navigation