Skip to main content
Log in

A Fenchel Duality Aspect of Iterative I-Projection Procedures

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we interpret Dykstra's iterative procedure for finding anI-projection onto the intersection of closed, convex sets in terms of itsFenchel dual. Seen in terms of its dual formulation, Dykstra's algorithm isintuitive and can be shown to converge monotonically to the correctsolution. Moreover, we show that it is possible to sharply bound thelocation of the constrained optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1990). Categorical Data Analysis, Wiley, New York.

    Google Scholar 

  • Bhattacharya, B. and Dykstra, R. L. (1995). A general duality approach to I-projections, J. Statist. Plann. Inference, 3, 146–159.

    Google Scholar 

  • Csiszar, I. (1975). I-divergence geometry of probability distributions and minimization problems, Ann. Probab., 3, 146–159.

    Google Scholar 

  • Deming, W. E. and Stephan, F. F. (1940). On a least square adjustment of a sampled frequency table when the expected marginal totals are known, Ann. Math. Statist., 11, 427–444.

    Google Scholar 

  • Dykstra, R. L. (1985a). An iterative procedure for obtaining I-projections onto the intersection of convex sets, Ann. Probab., 13, 975–984.

    Google Scholar 

  • Dykstra, R. L. (1985b). Computational aspects of I-projections, J. Statist. Comput. Simulation, 21, 265–274.

    Google Scholar 

  • Dykstra, R. L. and Lemke, J. H. (1988). Duality of I-projections and maximum likelihood estimation for log-linear models under cone constraints, J. Amer. Statist. Assoc., 402, 546–554.

    Google Scholar 

  • Good, I. J. (1963). Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables, Ann. Math. Statist., 34, 911–934.

    Google Scholar 

  • Hestenes, M. R. (1975). Optimization Theory, Wiley, New York.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics, Phys. Rev., 106, 620–630.

    Google Scholar 

  • Kullback, S. (1959). Information Theory and Statistics, Wiley, New York.

    Google Scholar 

  • Norušis, M. J. (1988). SPSSX Advanced Statistics Guide, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Patefield, W. M. (1982). Exact tests for trends in ordered contingency tables, J. Roy. Statist. Soc. Ser. C, 31, 32–43.

    Google Scholar 

  • Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley, New York.

    Google Scholar 

  • Rockafellar, R. T. (1970). Convex Analysis, Princeton University Press, New York.

    Google Scholar 

  • Sanov, I. N. (1957). On the probability of large deviations of random variables, Mat. Sb., 42, 11–44

    Google Scholar 

  • Winkler, W. (1990). On Dykstra's iterative proportional fitting procedure, Ann. Probab., 18, 1410–1415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bhattacharya, B., Dykstra, R.L. A Fenchel Duality Aspect of Iterative I-Projection Procedures. Annals of the Institute of Statistical Mathematics 49, 435–446 (1997). https://doi.org/10.1023/A:1003110627413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003110627413

Navigation