Skip to main content
Log in

The distribution of genetic variability in Baccharis concinna (Asteraceae), an endemic, dioecious and threatened shrub of rupestrian fields of Brazil

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Distribution of genetic variability may becorrelated with life history traits, such asreproductive system, pollination, seeddispersal mode, geographical distribution, andlocal abundance. We used RAPD markers to studythe distribution of genetic variability of sixpopulations of Baccharis concinna(Asteraceae), a rare, dioecious and threatenedshrub, endemic to Serra do Cipó,southeastern Brazil, along an altitudinalgradient, ranging from 950 to 1300 m above sealevel. From 113 RAPD markers, 35 wererestricted to one of the six populations.Genetic variability distribution in B.concinna populations was weakly related to thealtitudinal gradient. The largest proportion ofthe genetic variability was due to variationwithin populations (82.82%, P < 0.001), while17.18% (P < 0.001) was due to variation amongpopulations from different elevations.Similarity among populations along thealtitudinal gradient was high, ranging from 65to 74%, suggesting an intensive gene flowamong them or a recent fragmentation of anancient population into many small populations.Dioecy and other life history traits such aswind pollination and seed dispersal mayinfluence the distribution of the geneticvariability in this species. In addition, fireand habitat fragmentation represent otherimportant factors that influence thesurvivorship of this rare and threatenedspecies, and hence the distribution of itsgenetic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayres DR, Ryan FJ (1999) Genetic diversity and structure of the narrow endemic Wyethia reticulata and its congener W. bolanderi (Asteraceae) using RAPD and allozyme techniques. Am. J. Bot., 86, 344–353.

    PubMed  Google Scholar 

  • Barroso GM (1976) Compositae-Subtribo Baccharinidae Hoffman-Estudo das espécies ocorrentes no Brasil. Rodriguésia, 40, 3–273.

    Google Scholar 

  • Bartish JV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol. Ecol., 8, 791–802.

    Article  CAS  Google Scholar 

  • Borba, EL, Felix, JM, Solferini, VN, Semir, J (2001). Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: Evidence from isozyme markers. Am. J. Bot., 88, 419–428.

    CAS  PubMed  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27, 325–349.

    Google Scholar 

  • Bussel JD (1999) The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol., 8, 775–789.

    Google Scholar 

  • Comes HP, Abbott RJ (2000) Random amplified polymorphic DNA (RAPD) and quantitative trait analysis across a major phylogeographical break in the Mediterranean ragwort Senecio gallicus Vill. (Asteraceae). Mol. Ecol., 9, 61–76.

    Article  CAS  PubMed  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecological association between species. Ecology, 26, 297–302.

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst., 24, 217–242.

    Article  Google Scholar 

  • Esselman EJ, Crawford DJ, Brauner S et al. (2000) RAPD marker diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae). Am. J. Bot., 87, 591–596.

    CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed  Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF et al. (1996) Galling insects on Neotropical species of Baccharis (Asteraceae). Trop. Zool., 9, 315–332.

    Google Scholar 

  • Franklin IR (1980) Evolutionary changes in small populations. In: Conservation Biology, an Evolutionary-Ecological Perspective (eds. Soulé ME, Wilcox BA), pp. 135–149. Sinauer Associates, Sunderlands.

    Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: Process of species extinction. In: Conservation Biology, the Science of Scarcity and Diversity (ed. Soulé ME), pp. 19–34. Sinauer Associates, Sunderlands.

    Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am. J. Bot., 87, 783–792.

    PubMed  Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM. (1997) Espinhaço range region: Eastern Brazil. In: Centre of Plants Diversity: A Guide and Strategy for Their Conservation (eds. Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC), pp. 397–404. World Wildlife Fund/World Conservation Union, Cambridge.

    Google Scholar 

  • Godt MJW, Hamrick JL (1993) Genetic diversity and population structure in Tradescantia hirsuticaulis (Commelinaceae). Am. J. Bot., 80, 959–966.

    Google Scholar 

  • Gugerli F, Eichenberger K, Schneller JJ (1999) Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol. Ecol., 8, 453–461.

    Article  CAS  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst., 10, 173–200.

    Article  Google Scholar 

  • Heaton HJ, Whitkus R, Gómes-Pompa A (1999) Extreme ecological and phenotypic differences in the tropical tree chicozapote (Manilkara zapota (L.) P. Royen) are not matched by genetic divergence: A random amplified polymorphic DNA (RAPD) analysis. Mol. Ecol., 8, 627–632.

    Article  Google Scholar 

  • Hickey RJ, Vincent MA, Guttman SI (1991) Genetic variation in running buffalo clover (Trifolium stoloniferum, Fabaceae). Conserv. Biol., 5, 309–316.

    Article  Google Scholar 

  • Isabel N, Beaulieu J, Bousquet J (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc. Nat. Acad. Sci. USA, 92, 6369–6373.

    CAS  PubMed  Google Scholar 

  • Jesus FF, Solferini VN, Semir J, Prado PI (2001) Local genetic differentiation in Proteopsis argentea (Asteraceae), a perennial herb endemic in Brazil. Plant Syst. Evol., 226, 59–68.

    Article  CAS  Google Scholar 

  • Kang U, Chang CS, Kim YS (2000) Genetic structure and conservation considerations of rare endemic Abeliophyllum distichum Nakai (Oleaceae) in Korea. J. Plant Res., 113, 127–138.

    Google Scholar 

  • Lande, R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res. Pop. Ecol., 40, 259–269.

    Google Scholar 

  • Ledig FT, Conkle MT (1983) Gene diversity and genetic structure in a narrow endemic, torrey pine (Pinus torreyana Parry ex Carr.). Evolution, 37, 79–85.

    CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst., 15, 65–95.

    Article  Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric Chamaecrista taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J. Trop. Ecol., 15, 463–479.

    Article  Google Scholar 

  • Maki M, Horie S (1999) Random amplified polymorphic DNA (RAPD) markers reval less genetic variation in the endangered plant Cerastium fischerianum var molle than in the widespread conspecific C. fischerianum var. fischerianum (Caryophyllaceae). Mol. Ecol., 8, 145–150.

    Article  CAS  Google Scholar 

  • Marques AR, Fernandes GW, Reis IA, Assunção RM (2002) Distribution of adult male and female Baccharis concinna (Asteraceae) in the rupestrian fields of Serra do Cipó, Brazil. Plant Biol., 4, 94–103.

    Google Scholar 

  • Mendonça MP, Lins VL (eds.) (2000) Lista vermelha das espécies ameaçadas de extinção da flora de Minas Gerais. Fundação Biodiversitas, Fundação Zoo-Botânica de Belo Horizonte, Belo Horizonte.

    Google Scholar 

  • Morden CW, Loeffler W (1999) Fragmentation and genetic differentiation among subpopulations of the endangered Hawaiian mint Haplostachys haplostachya (Lamiaceae). Mol. Ecol., 8, 617–625.

    Article  Google Scholar 

  • Mullis B (1990) The unusual origin of the polymerase chain reaction. Sci. Am. (April), 56–65.

  • O'Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural populations. TREE, 3, 254–259.

    Google Scholar 

  • Odasz AM, Savolainen O (1996) Genetic variation in populations of the arctic perenial Pedicularis dasyantha (Scrophulariaceae), on Svalbard, Norway. Am. J. Bot., 83, 1379–1385.

    Google Scholar 

  • Prathepha P, Baimai V (1999) Genetic differentiation in Thai populations of the rare species Afgekia sericea Craib (Leguminosae) revealed by RAPD-PCR assays. Genetics, 105, 193–202.

    CAS  Google Scholar 

  • Primack RB (1993) Essentials of Conservation Biology. Sinauer Associates, Sunderland.

    Google Scholar 

  • Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol., 147, 205–218.

    Article  Google Scholar 

  • Rosseto M, Weaver PK, Dixon KW (1995) Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae). Mol. Ecol., 4, 321–329.

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin Version 2000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science, 236, 787–792.

    CAS  PubMed  Google Scholar 

  • Smith JF, Pham TV (1996) Genetic diversity of the narrow endemic Allium aaseae (Alliaceae). Am. J. Bot., 83, 717–726.

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Molecular Systematics (eds. Hillis DM, Moritz C), pp. 411–501. Sinauer Associates, Sunderland.

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski, JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Ac. Res., 18, 6531–6535.

    CAS  Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia, 50, 296–302.

    Article  Google Scholar 

  • Wolf AT, Howe RW, Hamrick JL (2000) Genetic diversity and population structure of the serpentine endemic Calystegia collina (Convolvulaceae) in Northern California. Am. J. Bot., 87, 1138–1146.

    PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. TREE, 11, 413–418.

    Google Scholar 

  • Zhuravlelv YN, Reunova GD, Artyukova EV, Kozyrenko MM, Muzarpk TI (1998) Genetic variation of wild ginseng populations (RAPD analysis). Mol. Biol., 32, 910–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane G. Collevatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, V., Collevatti, R.G., Silveira, F.A. et al. The distribution of genetic variability in Baccharis concinna (Asteraceae), an endemic, dioecious and threatened shrub of rupestrian fields of Brazil. Conservation Genetics 5, 157–165 (2004). https://doi.org/10.1023/B:COGE.0000030000.27772.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000030000.27772.36

Navigation