Skip to main content
Log in

Selective Catalytic Synthesis of 2-Ethyl Phenol over Cu1− xCox Fe2O4–Kinetics, Catalysis and XPS Aspects

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A systematic study of catalytic ethylation of phenol is carried out with ethanol as a function of feed composition, time on stream (TOS), temperature, and catalyst composition over Cu1 x Co x Fe2O4 (x=0.0–1.0) ferrospinel system. Phenol ethylation gives 2-ethyl phenol as a major product under the reaction conditions employed, while its selectivity decreases as temperature and Co-content increases. Compositions containing both Cu and Co (0<x<1) are found to be more efficient for better catalytic performance than the end compositions (x=0 and 1); x=0.5 shows the highest catalytic performance. TOS studies clearly exhibit the stable activity for x≤0.75 for at least 50h. X-ray photoemission spectra (XPS) and X-ray induced Auger electron spectroscopy analysis revealed the partial reduction of metal ions during reaction. Valence band studies clearly show an increase in overlap of metal-ion 3d bands from fresh to spent catalysts by a large decrease in energy gap between them. Cu-rich compositions display a large amount of Cu species on the surface and highlight its importance in the ethylation. High catalytic activity displayed by 0<x<1 emphasizing the importance of both Cu and Co for better catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fiege Ullmann's Encyclopedia of Industrial Chemistry; Federal Republic of Germany, Vol. A19 (A.G. Bayer, leverkusen p.324.

  2. S. Patinuin and B.S. Friedman, Alkylation of Aromatics with Alkenes and Alkanes in Friedel Crafts and Related Reactions, Vol. 3, ed. G.A. Olah (Interscience, New York, 1964) p. 75.

    Google Scholar 

  3. S. Sato, R. Takahashi, T. Sodesawa, K. Matsumoto and Y. Kamimura, J. Catal. 184 (1999) 180.

    Google Scholar 

  4. K. Tanabe and T. Nishizaki, in:Procceedings 6th Internationl Congress on Catalysis, ed. F.C. Tompkins The Chemical Society, London, 1977).

    Google Scholar 

  5. T. Kotanigawa, M. Yamamoto, K. Shimokawa and Y. Yoshida, Bull. Chem. Jpn. 44 (1971) 1961.

    Google Scholar 

  6. M. Inoue and S. Emoto, Chem. Pharm. Bull. 20 (1972) 232.

    Google Scholar 

  7. H. Saltonstall and A. Settle, J. Am. Chem. Soc. 71 (1949) 943.

    Google Scholar 

  8. R. Stroh, R. Seydel and W. Hahn, in:Neuere Methoden der Praparatively Organischen Chemie, ed. W. Foerst (Verlag-Chemie, Weinheim 2, 1960) p. 231.

    Google Scholar 

  9. Z.P. Aleksandrova, J. Gen. Chem. (U.S.S.R) 12 (1942) 522.

    Google Scholar 

  10. A.G. Bayer, EP 102 493 (1983).

  11. S. Velu and C.S. Swamy, Res. Chem. Intermed. 26 (2000) 295.

    Google Scholar 

  12. K. Sreekumar, T. Mathew, R. Rajagopal, R. Vetrivel and B.S. Rao, Catal. Lett. 65 (2000) 99.

    Google Scholar 

  13. K. Sreekumar, T. Mathew, S.P. Mirajkar, S. Sugunan and B.S. Rao, Appl. Catal. A 201 (2000) L1.

    Google Scholar 

  14. K. Sreekumar, T. Mathew, B.M. Devassy, R. Rajagopal, R. Vetrivel and B.S. Rao, Appl. Catal. A 205 (2001) 11.

    Google Scholar 

  15. K. Sreekumar, T.M. Jyothi, T. Mathew, M.B. Talawar, S. Sugunan and B.S. Rao, J. Mol. Catal. A 159 (2000) 327.

    Google Scholar 

  16. B.S. Rao, K. Sreekumar and T.M. Jyothi, Indian Patent 2707/98 (1998).

  17. P.S. Anilkumar, J.J. Shrotri, S.D. Kulkarni, C.E. Deshpande and S.K. Date, Mater. Lett. 27 (1996) 293.

    Google Scholar 

  18. T. Mathew, Ph.D Thesis, Synthesis and characterization of mixed oxides containing cobalt, copper and iron and study of their catalytic activity, University of Pune, 2002.

  19. K. Lázár, T. Mathew, Z. Koppány, J. Megyeri, V. Samuel, S.P. Mirajkar, B.S. Rao and L. Guczi, Phys. Chem. Chem. Phys. 4 (2002) 3530.

    Google Scholar 

  20. T. Mathew, N.R. Shiju, K. Sreekumar, B.S. Rao and C.S. Gopinath, J. Catal. 210 (2002) 405; T. Mathew, B.S. Rao and C.S. Gopinath,J. Catal. 222 (2004) 107; references therein.

    Google Scholar 

  21. T. Mathew, N.R. Shiju, B.B. Tope, S.G. Hegde, B.S. Rao and C.S. Gopinath, Phys. Chem. Chem. Phys. 4 (2002) 4260.

    Google Scholar 

  22. M.K. Dongare, V. Ramaswamy, C.S. Gopinath, A.V. Ramaswamy, S. Scheurell, M. Brueckner and E. Kemnitz, J. Catal. 199 (2001) 209.

    Google Scholar 

  23. V.L.J. Joly, P.A. Joy, S.K. Date and C.S. Gopinath, J. Phys. Cond. Mat. 13 (2001) 649.

    Google Scholar 

  24. G. Moretti, G. Fierro, M.L. Jacono and P. Porta, Surf. Interface Anal. 14 (1989) 325.

    Google Scholar 

  25. S. Poulston, P.M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal. 24 (1996) 811.

    Google Scholar 

  26. B.R. Strohmeier, B.E. Leyden, R.S. Field and D.M. Hercules, J. Catal. 94 (1985) 514.

    Google Scholar 

  27. J.H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8 (1976) 129.

    Google Scholar 

  28. T. Yamaguchi, Proc. Fac. Eng. Keiogijuku Univ. 19 (1967) 776.

    Google Scholar 

  29. G. van der Laan, C. Westra, C. Haas and G.A. Sawatzky, Phys. Rev. B 23 (1981) 4369.

    Google Scholar 

  30. M.S. Stranick, M. Houalla and D.M. Hercules, J. Catal. 106 (1987) 362.

    Google Scholar 

  31. N.S. McIntyre and M.G. Cook, Anal. Chem. 47 (1975) 2210.

    Google Scholar 

  32. Z. Zsoldos and L. Guczi, J. Phys. Chem. 96 (1992) 9393.

    Google Scholar 

  33. P. Mills and J.L. Sullivan, J. Phys. D 16 (1983) 723.

    Google Scholar 

  34. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma and K. Okada, PRB 59 (1999) 3195.

    Google Scholar 

  35. J.J. Yeh and I. Lindau, At Data Nucl. Data Tables 32 (1985) 1.

    Google Scholar 

  36. S. Velu, K. Suzuki, C.S. Gopinath, H. Yoshida and T. Hattori, PCCP 4 (2002) 1990.

    Google Scholar 

  37. S. Velu, K. Suzuki and C.S. Gopinath, J. Phys. Chem. B 106 (2002) 12737.

    Google Scholar 

  38. K. Li, I. Wang and K. Chang, Ind. Eng. Chem. Res. 32 (1993) 1007.

    Google Scholar 

  39. F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A. Romero, J.A. Navio and M. Macias, Appl. Catal. 99 (1993) 161.

    Google Scholar 

  40. E. Santacesaria, M. Diserio, P. Ciambelli, D. Gelosa and S. Carra, Appl. Catal. 64 (1990) 101.

    Google Scholar 

  41. S. Velu and C.S. Swamy, Appl. Catal. A 145 (1996) 225.

    Google Scholar 

  42. P.L. Yue and O. Olaofe, Chem. Eng. Res. Des. 62 (1984) 167.

    Google Scholar 

  43. F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna and J.M. Marinas, J. Catal. 107 (1987) 181.

    Google Scholar 

  44. A. Corma, F. Llopis, J.B. Monton and S. Weller, J. Catal. 142 (1993) 97.

    Google Scholar 

  45. G.C. Bond, Catal. Rev. Sci. Eng. 42 (2000) 323.

    Google Scholar 

  46. A.B. Hart and R.A. Ross, J. Catal. 2 (1963) 121 and 251.

    Google Scholar 

  47. G. Fornasari, A.D. Huysser, L. Mintcher, F. Trifiro and A. Vaccari, J. Catal. 135 (1992) 386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.S. Gopinath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, T., Shiju, N., Bokade, V. et al. Selective Catalytic Synthesis of 2-Ethyl Phenol over Cu1− xCox Fe2O4–Kinetics, Catalysis and XPS Aspects. Catalysis Letters 94, 223–236 (2004). https://doi.org/10.1023/B:CATL.0000020577.34669.4c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000020577.34669.4c

Navigation