Skip to main content
Log in

Redistribution of Cations Amongst Different Lattice Sites in Cu1−x Co x Fe2O4 Ferrospinels During Alkylation: Magnetic Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Cu1−x Co x Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1.0) ferrospinels prepared by low temperature coprecipitation method and glycine nitrate combustion method has been studied in gas phase methylation of phenol. Phenol methylation gives mainly o-cresol and 2,6-xylenol as major products and among various compositions, x = 0.50 shows good catalytic performance irrespective of the preparation method. The difference in properties of the fresh and spent catalysts was thoroughly characterized by adopting various physico-chemical characterization techniques with special emphasize on magnetic measurements. Various conclusions derived from magnetic study are in good agreement with our previous study of XRD and Mossbauer on same catalyst system. Redistribution of cations occurred during the reaction is evidenced from the increase of saturation magnetization in the spent. Spent x = 0.0 shows high T c close to the value of Fe3O4 indicating that the material has ended with a solid solution of Fe3O4 and CuFe2O4 along with other reduced phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Oh and R.M. Sinkevitch, J. Catal. 142 (1993) 254.

    Google Scholar 

  2. H.K. Harold and C.K. Mayfair, Adv. Catal. 33 (1985) 159.

    Google Scholar 

  3. F.C. Romeijn, Philips Res. Rep. 8 (1953) 304.

    Google Scholar 

  4. Blasse, Philips Res. Rep. Suppl. 3, (1964) 96.

  5. A. Miller, J. Appl. Phys. 30 (1959) 245.

    Google Scholar 

  6. G.M. Schwab, E. Roth, C.H. Grinzoz and N. Mavrakis, Structure and Properties of Solid Surface, eds. R. Gomer and C.S. Smith (Univ. Chicago Press, Chicago, 1953).

    Google Scholar 

  7. G.M. Schwab and A.Z. Kraut, Anorg. Allgem. Chem. 295 (1958) 36.

    Google Scholar 

  8. J.P. Suchet, Chemical Physics of Semiconductor (Van Nostrand, London, 1965).

    Google Scholar 

  9. N. Yamamoto, S. Kawano, N. Achiwa, M. Kiyama andT. Takada, Jpn. J. Appl. Phys. 12 (1973) 1830.

    Google Scholar 

  10. A.M. Sundaram and V. Sreenivasan, Phys. Status Solid A 69 (1982) K15.

    Google Scholar 

  11. M. Schmalzaried, Z. Phys. Chem. 28 (1961) 203.

    Google Scholar 

  12. R.K. Datta and R. Roy, J. Am. Ceram. Soc. 50 (1967) 578.

    Google Scholar 

  13. R.K. Datta and R. Roy, Am. Mineral 53 (1968) 1456.

    Google Scholar 

  14. C.S. Narasimhan and C.S. Swamy, Appl. Catal. 2 (1982) 315.

    Google Scholar 

  15. E. Prince, Phys. Rev. 102 (1956) 674.

    Google Scholar 

  16. G.H. Sawatzky, F. der Woude and A.H. Morrish, Phys. Rev. 187 (1969) 747.

    Google Scholar 

  17. E.J.W. Verwey and E.L. Heilmann, J. Chem. Phys. 15 (1947) 174.

    Google Scholar 

  18. B.S. Rao, T. Mathew, N.R. Shiju and R. Vetrivel, (Indian Patent pending) in-press.

  19. B.S. Rao, K. Sreekumar and T.M. Jyothi, Indian Patent 2707/98 in-press (1998).

  20. K. Lázár, T. Mathew, Z. Koppány, J. Megyeri, V. Samuel, S.P. Mirajkar, B.S. Rao and L. Guczi, Phys. Chem. Chem. Phys. 4 (2002) 3530.

    Google Scholar 

  21. T. Mathew, N.R. Shiju, K. Sreekumar, B.S. Rao and C.S. Gopinath, J. Catal. 210 (2002) 405.

    Google Scholar 

  22. K. Sreekumar, T. Mathew, B.M. Devassy, R. Rajgopal, R. Vetrivel and B.S. Rao, Appl. Catal. A: Gen. 205 (2001) 11.

    Google Scholar 

  23. S. Ghorpade, V.S. Darshane and S.G. Dixit, Appl. Catal. A: Gen. 166 (1998) 135.

    Google Scholar 

  24. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos, Mater. Lett. 10 (1990) 6.

    Google Scholar 

  25. E. Prince and R.G. Treuting, Acta. Cryst. 9 (1956) 1025.

    Google Scholar 

  26. J. Smit and H.P.J. Wijn, Advan. Electron. Electronphys. 6 (1954) 83.

    Google Scholar 

  27. R.D. Waldron, Phys. Rev. 99 (1955) 1727.

    Google Scholar 

  28. W.B. White and B.A. De Angelis, Spectrochim. Acta A 23 (1967) 985.

    Google Scholar 

  29. V.R.K. Murthy, S. Chitra Sankar, K.V. Reddy and J. Sobhanadi, Ind. J. Pure Appl. Phys. 16 (1978) 79.

    Google Scholar 

  30. M. Goodenough, Magnetism theChemicalBond (Wiley, New York, 1963).

    Google Scholar 

  31. T. Kotanigawa, M. Yamamoto, K. Shimokawa and Y. Yoshida, Bull. Chem. Soc. Jpn. 44 (1971) 1961.

    Google Scholar 

  32. J.P. Jacobs, A. Maltha, J.R.H. Reintjes, T. Drimal, V. Ponec and H.H. Brogersma, J. Catal. 147 (1994) 294.

    Google Scholar 

  33. B. Viswanathan and V.R.K. Murthy, Ferrite Materials, Science and Technology (Narosa Publishing House, 1990).

  34. Ph. Tailhades, C. Villette, A. Rousset, G.U. Kulkarni, K.R. Kannan, C.N.R. Rao and M. Lenglet, J. Solid State Chem. 141 (1998) 56.

    Google Scholar 

  35. J. Smit and H.P.J. Wijn Ferrites, N.V. Philip's Gloeilampenfabrieken Eindhoven, The Netherlands, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, T., Shylesh, S., Reddy, S. et al. Redistribution of Cations Amongst Different Lattice Sites in Cu1−x Co x Fe2O4 Ferrospinels During Alkylation: Magnetic Study. Catalysis Letters 93, 155–163 (2004). https://doi.org/10.1023/B:CATL.0000017070.12868.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000017070.12868.6f

Navigation