Skip to main content
Log in

Rational Design and Synthesis of Ribozymes

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

We review our procedure for the rational design and the synthesis of oligoribonucleotides with particular reference to our recent studies of the development of a hairpin-derived twin ribozyme. Our work focuses on the design of ribozymes that are derived from naturally occurring structures but posses extended catalytic activities. Currently we are studying ribozymes that are capable of site-specific RNA double cleavage. We have designed these “twin ribozymes” by combining of two catalytic motifs in one molecule. In addition to kinetic analysis of the cleavage reaction, we are interested in the general phenomena of RNA folding and the characterization of RNA structure–function relationships. The developed twin ribozymes are particularly well suited for this purpose. They have to fold into a complex structure to achieve catalytic activity. Since there is a direct correlation between conformation and activity, the process of folding can be followed by monitoring the cleavage reaction. The twin ribozymes were synthesized by a combination of phosphoramidite chemistry and in vitro transcription techniques. We report the synthesis of a powerful reagent to replace tetrazole for activation of RNA phosphoramidites in automated solid-phase synthesis, allowing for coupling yields of >99%. Furthermore, we introduce a fast quantitative assay of ribozyme activity which is based on fluorescently labeled oligoribonucleotide substrates and DNA sequencer technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tarasow, T.M., Tarasow, S.L., and Eaton, B.E., Nature, 1997, vol. 389, pp. 54–57.

    PubMed  Google Scholar 

  2. Zhang, B. and Cech, T.R., Nature, 1997, vol. 390, pp. 96–100.

    PubMed  Google Scholar 

  3. Seelig, B. and Jäschke, A., Chemistry Biology, 1999, vol. 6, pp. 167–176.

    PubMed  Google Scholar 

  4. Lisziewicz, J., Sun, D., Kliotman, M., Agrawal, S., Zamecnik, P., and Gallo, R., Proc. Natl. Acad. Sci. USA., 1992, vol. 89, pp. 11209–11213.

    PubMed  Google Scholar 

  5. Taira, K., Nakagawa, K., Nishikawa, S., and Furukawa, K., Nucleic Acids Res., 1991, vol. 19, pp. 5152–5130.

    Google Scholar 

  6. Ohkawa, J., Yuyama, N., Takebe, Y., Nishikawa, S., and Taira, K., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 11302–11306.

    PubMed  Google Scholar 

  7. Chen, C.J., Banerjea, C.B., Harmison, G.G., Hagelund, K., and Schubert, M., Nucleic Acids Res., 1992, vol. 20, pp. 4581–4589.

    PubMed  Google Scholar 

  8. Weizacker, F.V., Blum, H.E., and Wands, J.R., Biochem. Biophys. Res. Commun., 1992, vol. 189, pp. 743–748.

    PubMed  Google Scholar 

  9. Scaringe, S.A., Wincott, F.E., and Caruthers, M.H., J. Am. Chem. Soc., 1998, vol. 120, pp. 11820–11821.

    Google Scholar 

  10. Ogilvie, K.K., Thompson, E.A., Quilliam, M.A., and Westmore, J.B., Tetrahedron Lett., 1974, pp. 2865–2868.

  11. Damha, M.J. and Ogilvie, K.K., Methods in Molecular Biology, Agrawal, S., Ed., Totowa, NY: Humana Press, 1993, pp. 81–114.

    Google Scholar 

  12. Scaringe, S.A., Francklyn, C., and Usman, N., Nucleic Acids Res., 1990, vol. 18, pp. 5433–5441.

    PubMed  Google Scholar 

  13. Müller, S., Bioorganic Chemistry, Highlights and New Aspects, Diederichsen, U., Lindhorst, T.K., Westermann, B., and Wessjohann, L.A., Eds., Weinheim: Wiley-VCH, 1999, pp. 281–290.

    Google Scholar 

  14. Schmidt, C., Welz, R., and Müller, S., Nucleic Acids Res., 2000, vol. 28, pp. 886–894.

    PubMed  Google Scholar 

  15. Gait, M.J., Pritchard, C., and Slim, G., Oligonucleotides and Analogues, Eckstein, F., Ed., New York: Oxford University Press, 1991, pp. 25–48.

    Google Scholar 

  16. Gasparutto, D., Livache, T., Bazin, H., Duplaa, A.-M., Guy, A., Khorlin, A., Molko, D., Roget, A., and Teoule, R., Nucleic Acids Res., 1992, vol. 19, pp. 5159–5166.

    Google Scholar 

  17. Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N., Nucleic Acids Res., 1995, vol. 23, pp. 2677–2684.

    PubMed  Google Scholar 

  18. Usman, N., Ogilvie, K.K., Jiang, M.-Y., and Cedergren, R.J., J. Am. Chem. Soc., 1987, vol. 109, pp. 7845–7854.

    Google Scholar 

  19. Vargeese, C., Carter, J., Yegge, J., Krivjansky, S., Settle, A., Kropp, E., Peterson, K., and Pieken, W., Nucleic Acids Res., 1998, vol. 26, pp. 1046–1050.

    PubMed  Google Scholar 

  20. Sproat, B., Colonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., and Vinayak, R., Nucleosides Nucleotides, 1995, vol. 14, pp. 255–273.

    Google Scholar 

  21. Finnegan, W.G., Henry, R.A., and Lofquist, R., J. Org. Chem., 1958, vol. 80, pp. 3908–3911.

    Google Scholar 

  22. Fedor, M., J. Mol. Biol., 2000, vol. 297, pp. 269–291.

    PubMed  Google Scholar 

  23. Komatsu, Y., Kanzaki, I., Koizumi, M., and Ohtsuka, E., J. Mol. Biol., 1995, vol. 252, pp. 296–304.

    PubMed  Google Scholar 

  24. Komatsu, Y., Kanzaki, I., and Ohtsuka, E., Biochemistry, 1996, vol. 35, pp. 9815–9820.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welz, R., Schmidt, C. & Müller, S. Rational Design and Synthesis of Ribozymes. Molecular Biology 34, 934–939 (2000). https://doi.org/10.1023/A:1026644313406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026644313406

Navigation