Skip to main content
Log in

Thermal Conductivity of Nitrogen-Methane Mixtures at Temperatures Between 300 and 425 K and at Pressures Up to 16 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivities of nitrogen and three mixtures of nitrogen and methane at six nominal temperatures between 300 and 425 K have been measured as a function of pressure up to 16 MPa. The relative uncertainty of the thermal conductivity measurements at a 95% confidence level is estimated to be less then 1%. The data obtained and the results of the low-density analysis were used to test two prediction methods for the thermal conductivity of gas mixtures under pressure and for the thermal conductivity of dilute polyatomic gas mixtures. Reasonable agreement was found with expressions for predicting thermal conductivity of nonpolar mixtures in a dilute-gas limit developed by Schreiber et al. The scheme underestimates the experimental thermal conductivity with deviations not exceeding 3%. The prediction scheme for the thermal conductivity of gas mixtures under pressure suggested by Mason et al. and improved by Vesovic and Wakeham underestimates the experimental thermal conductivities throughout, likely due to its use of the Hirchsfelder–Eucken equation at the low-density limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. H. M. Roder and D. G. Friend, Int. J. Thermophys. 6:607(1985).

    Google Scholar 

  2. J. Kestin, Y. Nagasaka, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86:632(1982).

    Google Scholar 

  3. J. Kestin, S. T. Ro, and Y. Nagasaka, Ber. Bunsenges. Phys. Chem. 86:945(1982).

    Google Scholar 

  4. A. I. Johns, S. Rashid, L. Rowan, J. T. R. Watson, and A. A. Clifford, Int. J. Thermophys. 9:3(1988).

    Google Scholar 

  5. J. Pátek and J. Klomfar, Fluid Phase Equilib. 198:147(2002).

    Google Scholar 

  6. J. J. de Groot, J. Kestin, and H. Sookiazian, Physica 75:454(1974).

    Google Scholar 

  7. J. J. Healy, J. J. de Groot, and J. Kestin, Physica C 82:392(1976).

    Google Scholar 

  8. J. Kestin and W. A. Wakeham, Physica A 92:102(1978).

    Google Scholar 

  9. M. J. Assael, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, in Measurements of the Transport Properties of Fluids—Experimental Thermodynamics, Vol. 3, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), pp. 164-188.

    Google Scholar 

  10. R. Span, E. W. Lemmon, R. T. Jacobsen, and W. Wagner, Int. J. Thermophys. 19:1121(1998).

    Google Scholar 

  11. Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases, A.G.A. Report No. 8, Second Ed. (Arlington, Virginia, 1992).

  12. ISO 12 213, Natural Gas—Calculation of Compression Factor: Calculation using Molar-Composition Analysis, First Ed., Geneva (1997).

  13. M. Bureš, R. Holub, J. Leitner, and P. Vonka, The Thermochemical Quantities of Organic Compounds (Institute of Chemical Technology Editing Center, Prague, 1992).

    Google Scholar 

  14. E. A. Mason, H. E. Khalifa, J. Kestin, R. DiPippo, and J. R. Dorfman, Physica A 91:377(1978).

    Google Scholar 

  15. M. K. Tuam and K. E. Gubins, J. Chem. Phys. 55:268(1971).

    Google Scholar 

  16. J. Kestin and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 84:762(1980).

    Google Scholar 

  17. V. Vesovic and W. A. Wakeham, High Temp. High Press. 23:179(1991).

    Google Scholar 

  18. D. G. Friend, J. F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18:583(1989).

    Google Scholar 

  19. K. Stephan, R. Krauss, and A. Leasacke, J. Phys. Chem. Ref. Data 16:993(1987).

    Google Scholar 

  20. G. C. Mautland, E. B. Smith, M. Rigby, and W. A. Wakeham, Intermolecular Forces (Claredon Press, Oxford, 1981).

    Google Scholar 

  21. J. O. Hirschfelder, J. Chem. Phys. 26:282(1957).

    Google Scholar 

  22. J. Millat and W. A. Wakeham, J. Phys. Chem. Ref. Data 18:565(1989).

    Google Scholar 

  23. F. J. Uribe, E. A. Mason, and J. Kestin, J. Phys. Chem. Ref. Data 19:1123(1990).

    Google Scholar 

  24. M. Schreiber, V. Vesovic, and W. A. Wakeham, Int. J. Thermophys. 18:925(1997).

    Google Scholar 

  25. M. J. Ross, V. Vesovic, and W. A. Wakeham, Physica A 183:519(1992).

    Google Scholar 

  26. V. Vesovic, High Temp. High Press. 32:163(2000).

    Google Scholar 

  27. M. J. Assael, J. Millat, V. Vesovic, and W. A. Wakeham, J. Phys. Chem. Ref. Data 19:1137(1990).

    Google Scholar 

  28. B. Le Neindre, Int. J. Heat Mass Transfer 15:1(1972).

    Google Scholar 

  29. J. W. Haarman, auP Conf. Proc. 11:193(1973).

    Google Scholar 

  30. A. A. Clifford, J. Kestin, and W. A. Wakeham, Physica A 97:287(1979).

    Google Scholar 

  31. A. A. Clifford, P. Gray, A. I. Johns, A. C. Scott, and J. T. R. Watson, J. Chem. Soc. Faraday Trans. 77:2679(1981).

    Google Scholar 

  32. E. N. Haran, G. C. Mautland, M. Mustafa, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 87:657(1983).

    Google Scholar 

  33. A. I. Johns, S. Rashid, J. T. R. Watson, and A. A. Clifford, J. Chem. Soc. Faraday Trans. 82:2235(1986).

    Google Scholar 

  34. J. Millat, M. J. Ross, and W. A. Wakeham, Physica A 159:28(1989).

    Google Scholar 

  35. R. Mostert, H. R. van den Berg, and P. S. van der Gulik, Int. J. Thermophys. 11:597(1990).

    Google Scholar 

  36. R. A Perkins, H. M Roder, D. G. Friend, and C. A. Nieto de Castro, Physica A 173:322(1991).

    Google Scholar 

  37. L. Monchick, Int. J. Thermophys. 18:909(1997).

    Google Scholar 

  38. B. N. Taylor and Ch. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertaunty of NIST Measurement Result, NIST Tech. Note 1297 (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pátek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pátek, J., Klomfar, J., Čapla, L. et al. Thermal Conductivity of Nitrogen-Methane Mixtures at Temperatures Between 300 and 425 K and at Pressures Up to 16 MPa. International Journal of Thermophysics 24, 923–935 (2003). https://doi.org/10.1023/A:1025024127880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025024127880

Navigation