Skip to main content
Log in

Avidin-Biotin Micropatterning Methods for Biosensor Applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

High-resolution patterning methods have been developed to immobilize functional proteins onto a silicon dioxide surface for biosensor applications. Antibody lines, as small as 5 μm in width, with intervening 5 μm spacings, were patterned on oxidized silicon wafers using avidin-biotin chemistry. The N-hydroxysuccinimide (NHS) ester of photoactivatable biotin was covalently bound to a self assembled monolayer (SAM) of 3-amino-propyltriethoxysilane (3-APTS) after irradiation by 350 nm ultraviolet (UV) light from a 25 W Hg arc lamp. The patterned layers were evaluated using fluorescent imaging of Alexa-488 conjugated avidin and two fluorescence-conjugated antibodies. This technique allows binding of any biotinylated compound without exposure to harmful UV light, extreme pH, toxic chemicals, or high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Bashir, R. Gomez, A. Sarikaya, M.R. Ladisch, J. Sturgis, and J.P. Robinson, Biotechnology and Bioengineering 73, 324 (2001).

    Google Scholar 

  • G. Bidan, M. Billon, K. Galasso, T. Livache, G. Mathis, A. Toget, L.M. Torres-Rodriguez, and E. Vieil, Appl. Biochem. Biotechnol. 89, 183 (2000).

    Google Scholar 

  • J.D. Brewster, A.G. Gehring, R.S. Mazenko, L.J. Van Houten, C.J. Crawford, Anal. Chem. 68, 4153 (1996).

    Google Scholar 

  • C.S.M. Chen, S. Huang, G. Whitesides, and D. Ingber, Biotechnol. Prog. 14, 356 (1998).

    Google Scholar 

  • Z. Chnghua, P. Pivarnik, A.G. Rand, and S.V. Letcher, Biosens. Bioelectronics 15, 495 (1998).

    Google Scholar 

  • N. Dontha, W.B. Nowall, and W.G. Kuhr, Anal. Chem. 69, 2619 (1997).

    Google Scholar 

  • A.C. Forster, J.L. McInns, D.C. Skingle, and R. Symons, Nucleic Acid Res. 13, 745 (1985).

    Google Scholar 

  • N.M. Green, Advances in Protein Chemistry 29, 85 (1975).

    Google Scholar 

  • M. Hengsakul and A.E.G. Cass, Bioconj. Chem. 7, 249 (1996).

    Google Scholar 

  • E. Lacey and W.N. Grant, Anal. Biochem. 163, 151 (1987).

    Google Scholar 

  • M.C. Pirrung, and C.Y. Huang, Bioconjugate Chem. 7, 317 (1996).

    Google Scholar 

  • D. Savage, G. Mattson, S. Desai, G. Niedlander, S. Morgensen, and E. Conklin, in Avidin-Biotin Chemistry: A Handbook, p. 76 (Pierce Chemical Company, Rockford, 1994).

    Google Scholar 

  • P.M. St. John, R. Davis, N. Cady, J. Czajka, C.A. Batt, and H.G. Craighead, Anal Chem. 70, 1108 (1998).

    Google Scholar 

  • T. Tsuchiya, in CRC Handbook of Organic Photochemistry and Photobiology, p. 980 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  • M. Wilchek, and E.A. Bayer, Methods in Enzymology 184, 174 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orth, R.N., Clark, T. & Craighead, H. Avidin-Biotin Micropatterning Methods for Biosensor Applications. Biomedical Microdevices 5, 29–34 (2003). https://doi.org/10.1023/A:1024459215654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024459215654

Navigation