Skip to main content
Log in

ATP Synthases: Insights Into Their Motor Functions from Sequence and Structural Analyses

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

ATP synthases are motor complexes comprised of F0 and F1 parts that couple the proton gradient across the membrane to the synthesis of ATP by rotary catalysis. Although a great deal of information has been accumulated regarding the structure and function of ATP synthases, their motor functions are not fully understood. For this reason, we performed the alignments and analyses of the protein sequences comprising the core of the ATP synthase motor complex, and examined carefully the locations of the conserved residues in the subunit structures of ATP synthases. A summary of the findings from this bioinformatic study is as follows. First, we found that four conserved regions in the sequence of γ subunit are clustered into three patches in its structure. The interactions of these conserved patches with the α and β subunits are likely to be critical for energy coupling and catalytic activity of the ATP synthase. Second, we located a four-residue cluster at the N-terminal domain of mitochondrial OSCP or bacterial (or chloroplast) δ subunit which may be critical for the binding of these subunits to F1. Third, from the localizations of conserved residues in the subunits comprising the rotors of ATP synthases, we suggest that the conserved interaction site at the interface of subunit c and δ (mitochondria) or ε (bacteria and chloroplasts) may be important for connecting the rotor of F1 to the rotor of F0. Finally, we found the sequence of mitochondrial subunit b to be highly conserved, significantly longer than bacterial subunit b, and to contain a shorter dimerization domain than that of the bacterial protein. It is suggested that the different properties of mitochondrial subunit b may be necessary for interaction with other proteins, e.g., the supernumerary subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altschul, S. F., and Konini, E. V. (1998). Trends Biochem. Sci. 23, 444-447.

    Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Nucleic Acids Res. 25, 3389-3402.

    Google Scholar 

  • Borghese, R., Turina, P., Lambertini, L., and Melandri, B. A. (1998). Arch. Microbiol. 170, 385-388.

    Google Scholar 

  • Capaldi, R. A., and Aggeler, R. (2002). Trends Biochem. Sci. 27, 154-160.

    Google Scholar 

  • Crofts, A. R. (1992). PSAAM—A Protein Sequence Analysis and Modeling Package Copyright, University of Illinois. Available from The Biotechnology Center, University of Illinois, 901 S. Mathews, Urbana, IL 61801

  • Dunn, S. D., Revington, M., Cipriano, D. J., and Shilton, B. H. (2000). J. Bioenerg. Biomembr. 32, 347-355.

    Google Scholar 

  • Fillingame, R. H., and Divall, S. (1999). Novartis Found. Symp. 221, 218-229.

    Google Scholar 

  • Gibbons, C., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2000). Nat. Struct. Biol. 7, 1055-1061.

    Google Scholar 

  • Golden, T. R., and Pedersen, P. L. (1998). Biochemistry 37, 13871-13881.

    Google Scholar 

  • Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). Bioinformatics 14, 378-379.

    Google Scholar 

  • Hong, S., and Pedersen, P. L. (2002). Arch. Biochem. Biophys. 405, 38-43.

    Google Scholar 

  • Joshi, S., Cao, G. J., Nath, C., and Shah, J. (1996). Biochemistry 35, 12094-12103.

    Google Scholar 

  • Kramer, J. A. (2001). Mol. Biotechnol. 19, 97-106.

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). J. Mol. Biol. 305, 567-580.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982). J. Mol. Biol. 157, 105-132.

    Google Scholar 

  • Lupas, A., Van Dyke, M., and Stock, J. (1991). Science 252, 1162-1164.

    Google Scholar 

  • Nakamoto, R. K., and Al-Shawi, M. K. (1995). J. Biol. Chem. 270, 14042-14046.

    Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299-302.

    Google Scholar 

  • Pedersen, P. L., Ko, Y. H., and Hong, S. (2000a). J. Bioenerg. Biomembr. 32, 423-432.

    Google Scholar 

  • Pedersen, P. L., Ko, Y. H., and Hong, S. (2000b). J. Bioenerg. Biomembr. 32, 325-332.

    Google Scholar 

  • Rastogi, V. K., and Girvin, M. E. (1999). Nature 402, 263-268.

    Google Scholar 

  • Revington, M., Dunn, S. D., and Shaw, G. S. (2002). Protein Sci. 11, 1227-1238.

    Google Scholar 

  • Revington, M., McLachlin, D. T., Shaw, G. S., and Dunn, S. D. (1999). J. Biol. Chem. 274, 31094-31101.

    Google Scholar 

  • Richter, M. L., Hein, R., and Huchzermeyer, B. (2000). Biochim. Biophys. Acta. 1458, 326-342.

    Google Scholar 

  • Schuler, G. D., Altschul, S. F., and Lipman, D. J. (1991). Proteins 9, 180-190.

    Google Scholar 

  • Tanabe, M., Nishio, K., Iko, Y., Sambongi, Y., Iwamoto-Kihara, A., Wada, Y., and Futai, M. (2001). J. Biol. Chem. 276, 15269-15274.

    Google Scholar 

  • Thompson, J. D. (1994). Nucleic Acids Res. 22, 4673-4680.

    Google Scholar 

  • Velours, J., and Arselin, G. (2000). J. Bioenerg. Biomembr. 32, 383-390.

    Google Scholar 

  • Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997). Nat. Struct. Biol. 4, 198-201.

    Google Scholar 

  • Wishart, D. S., Stothard, P., and van Domselaar, G. H. (2000). Methods Mol. Biol. 132, 93-113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Pedersen, P.L. ATP Synthases: Insights Into Their Motor Functions from Sequence and Structural Analyses. J Bioenerg Biomembr 35, 95–120 (2003). https://doi.org/10.1023/A:1023786618422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023786618422

Navigation