Skip to main content
Log in

Ultrasonic Measurements on Quench—Condensed Noble Gas Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Quench–condensed noble gas films are a simple model system for studying the elastic properties of polycrystalline or amorphous solids at low temperatures. We have investigated the temperature dependence of the sound velocity δv/v and attenuation α of quench–condensed polycrystalline Ar, Ne, and HD films using surface acoustic waves at 800 MHz. Up to 0.7 K the sound velocity of all samples increases logarithmically in temperature and decreases above 1 K. This behavior is similar to what is found in glasses and is indicative of the presence of tunneling systems with a wide distribution of energies. Despite the qualitative similarities between the samples, remarkable quantitative differences were observed: Compared to argon the changes of sound velocity and of attenuation in neon are reduced by almost one order of magnitude and in HD even by approximately two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. For a review see: Amorphous Solids — Low Temperature Properties, ed. by W. A. Phillips, Topics in Current Physics, vol. 24, Springer, Berlin (1981).

  2. H. Menges and H. v. Löhneysen, J. Low Temp. Phys. 84, 237 (1991); N. Steinmetz, H. Menges, J. Dutzi, H. v. Löhneysen, and W. Goldacker, Phys. Rev. B 39, 2838 (1989).

    Google Scholar 

  3. L. Hornig, N. Schnur, G. Weiss, S. Hunklinger, and F. Baumann, Phys. Lett. A 132, 55 (1988); L. Hornig, B. Dttling, G. Weiss, S. Hunklinger, and F. Baumann, Z. Phys. B 86, 217 (1992).

    Google Scholar 

  4. A. Heuer and R. J. Silbey, Phys. Rev. Lett. 70, 3911 (1993); — Phys. Rev. B 49, 1441 (1994); — Phys. Rev. B 53, 609 (1996).

    Google Scholar 

  5. J. Classen, K. Eschenrder, and G. Weiss, Phys. Rev. B 52, 11475 (1995).

    Google Scholar 

  6. S. Hunklinger and W. Arnold, in: Physical Acoustics vol. 12, ed. by R. N. Thurston and W. P. Mason, Academic Press, New York (1976) p. 155.

    Google Scholar 

  7. See, e.g., S. Hunklinger and A. K. Raychaudhuri, in: Progress in Low Temperature Physics, Vol. IX, ed. by D. F. Brewer, Elsevier, Amsterdam (1986) p. 265.

  8. P. Doussineau, C. Frénois, R. G. Leisure, A. Levelut, and J.-Y. Prieur, J. Phys. (Paris) 41, 1193 (1980).

    Google Scholar 

  9. P. Doussineau J. Phys. (Paris) A 41, 1193 (1980).

    Google Scholar 

  10. R. Orbach, Proc. R. Soc. (London) A 264, 485 (1961).

    Google Scholar 

  11. D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, Phys. Rev. B 45, 2750 (1992).

    Google Scholar 

  12. S. Rau, C. Enss, S. Hunklinger, P. Neu, and A. Würger, Phys. Rev. B 52, 7179 (1995).

    Google Scholar 

  13. P. Neu and A. Heuer, J. Chem. Phys. 106, 1749 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, G., Eschenröder, K., Classen, J. et al. Ultrasonic Measurements on Quench—Condensed Noble Gas Films. Journal of Low Temperature Physics 111, 321–326 (1998). https://doi.org/10.1023/A:1022227401528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022227401528

Keywords

Navigation