Skip to main content
Log in

Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Based on existing knowledge about phytoplankton responses to nutrients and food size spectra of herbivorous zooplankton, three different configurations of pelagic food webs are proposed for three different types of marine nutrient regimes: (1) upwelling systems, (2) oligotrophic oceanic systems, (3) eutrophicated coastal systems. Upwelling systems are characterised by high levels of plant nutrients and high ratios of Si to N and P. Phytoplankton consists mainly of diatoms together with a subdominant contribution of flagellates. Most phytoplankton falls into the food spectrum of herbivorous, crustacean zooplankton. Therefore, herbivorous crustaceans occupy trophic level 2 and zooplanktivorous fish occupy trophic level 3. Phytoplankton in oligotrophic, oceanic systems is dominated by picoplankton, which are too small to be ingested by copepods. Most primary production is channelled through the `microbial loop' (picoplankton – heterotrophic nanoflagellates – ciliates). Sporadically, pelagic tunicates also consume a substantial proportion of primary production. Herbivorous crustaceans feed on heterotrophic nanoflagellates and ciliates, thus occupying a food chain position between 3 and 4, which leads to a food chain position between 4 and 5 for zooplanktivorous fish. By cultural eutrophication, N and P availability are elevated while Si remains unaffected or even declines. Diatoms decrease in relative importance while summer blooms of inedible algae (Phaeocystis, toxic dinoflagellates, toxic prymnesiophyceae, etc.) prevail. The spring bloom may still contain a substantial contribution of diatoms. The production of the inedible algae enters the pelagic energy flow via the detritus food chain: DOC release by cell lysis – bacteria – heterotrophic nanoflagellates – ciliates. Accordingly, crustacean zooplankton occupy food chain position 4 to 5 during the non-diatom seasons. Ecological efficiency considerations lead to the conclusion that fish production:primary production ratios should be highest in upwelling systems and substantially lower in oligotrophic and in culturally eutrophicated systems. Further losses of fish production may occur when carnivorous, gelatinous zooplankton (jellyfish) replace fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, L. A. Meier-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257-263.

    Google Scholar 

  • Barber, R. T. & R. L. Smith, 1981. Coastal upwelling ecosystems. In Longhurst, A. R. (ed.), Analysis of Marine Ecosystems. Academic Press, London: 33-68.

    Google Scholar 

  • Billen, G. & J. Garnier, 1997. The Phison river plume: coastal eutrophication in response to changes in land use and water management in the watershed. Aquat. Microb. Ecol. 13: 3-17.

    Google Scholar 

  • Cadée, G. C., 1986. Recurrent and changing seasonal patterns of phytoplankton in the westernmost inlet of the Wadden Sea, the Marsdiep, since 1973. In Lancelot, C., G. Billen & H. Bath (eds), Water Pollution Research Report 12. Commission of the European Community, Luxembourg: 105-112.

    Google Scholar 

  • Cadée, G. C. & J. Hegeman, 1991. Historical phytoplankton data from the Marsdiep. Hydrobiol. Bull. 24: 111-119.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & D. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634-639.

    Google Scholar 

  • Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W. P. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina & R. Cudela, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilisation experiment in the equatorial Pacific Ocean. Nature 383: 495-501.

    Google Scholar 

  • Cushing, J. D. H., 1971. Upwelling and the productivity of fish. Adv. Mar. Biol. 9: 255-334.

    Google Scholar 

  • DeMott, W. R., 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol. Oceanogr. 33: 397-408.

    Google Scholar 

  • Egge, J. K. & A. Jacobsen, 1997. Influence of silicate on particulate carbon production in phytoplankton. Mar. Ecol. Progr. Ser. 147: 219-230.

    Google Scholar 

  • Escaravage, V., T. C. Prins, A. C. Smaal, J. C. H. Peeters, 1996. The response of phytoplankton communities to phosphorous input reductions in mesocosm experiments. J. Exp. Mar. Biol. Ecol. 198: 55-79.

    Google Scholar 

  • Granéli, E., P. Carlsson, P. Olsson, B. Sundström, W. Granéli & O. Lindahl, 1989. From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. In Cosper, E. M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer, New York: 407-427.

    Google Scholar 

  • Ianora, A., A. Miralto & S. A. Poulet, 1999. Are diatoms good or toxic for copepods? Reply to comment by Jonasdottir et al. Mar. Ecol. Progr. Ser. 177: 305-308.

    Google Scholar 

  • Ianora, A., S. A. Poulet & A. Miralto, 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar. Biol. 121: 533-539.

    Google Scholar 

  • Iverson, R. L., 1990. Control of marine fish production. Limnol. Oceanogr. 35: 1593-1604.

    Google Scholar 

  • James, A. G. & X. Chiappa-Carrara, 1990. A comparison of field studies on the trophic ecology of Engraulis capensis and E. mordax. In Barnes, M. & R. N. Gibson (eds), Trophic Relationships in the Marine Environment. Aberdeen Univ. Press: 208-221.

  • Jonasdottir, S. H., T. Kiørboe, K. W. Tang, M. St. John, A. W. Visser, E. Saiz & H. G. Dam, 1998. Role of diatoms in copepod production: good, harmless or toxic. Mar. Ecol. Progr. Ser. 172: 305-308.

    Google Scholar 

  • Katechakis, A., 1999. Nischenüberlappung zwischen herbivorem gelatinösen und Crustaceen-Zooplankton im NW-Mittelmeer (Catalanisches Meer). Diploma thesis, Univ. Kiel.

  • Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour of the planktonic copepod Acartia tonsa. Mar. Ecol. Progr. Ser. 143: 65-75.

    Google Scholar 

  • Kleppel, G. S., 1993. On the diet of calanoid copepods. Mar. Ecol. Progr. Ser. 99: 183-195.

    Google Scholar 

  • Legovic, T., 1987. A recent increase in jellyfish-populations: A predator-prey model and its implications. Ecol. Modell. 38: 243-256.

    Google Scholar 

  • Li, W. K. W., T. Zohary, Y. Z. Jacobi & A. M. Wood, 1993. Ultraphytoplankton in the eastern Mediterranean Sea: towards deriving phytoplankton biomass from flow cytometric measures of abundance, fluorescence and light scatter. Mar. Ecol. Progr. Ser. 102: 79-87.

    Google Scholar 

  • Lindell, D. & A. F. Post, 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40: 1130-1141.

    Google Scholar 

  • Nejstgaard, J. C., I. Gismervik & P. T. Solberg, 1997. Feeding and reproduction by Calanus finnmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliana huxleyi. Mar. Ecol. Progr. Ser. 147: 197-217.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean foodweb, a changing paradigm. BioScience 24: 499-504.

    Google Scholar 

  • Radach, G. & J. Berg, 1986. Trends in den Konzentrationen der Nährstoffe und des Phytoplanktons in der Deutschen Bucht. Ber. Biol. Anst. Helgoland 2: 1-165.

    Google Scholar 

  • Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Can. Bull. Fish. aquat. Sci. 214: 1-70.

    Google Scholar 

  • Ryther, J. H., 1969. Photosynthesis and fish production in the Sea. Science 166: 72-78.

    Google Scholar 

  • Schöllhorn, E. & E. Granéli, 1996. Influence of different nitrogen to silica ratios and artificial mixing on the structure of a summer phytoplankton community from the Swedish west coast (Gullmar Fjord). J. Sea Res. 35: 159-167.

    Google Scholar 

  • Shushkina, E. A. & M. Y. Vinogradov, 1991. Long-term changes in the biomass of plankton in open areas of the Black Sea. Oceanology 31: 716-721.

    Google Scholar 

  • Sieburth, J. M. & P. G. Davis, 1982. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Sea. Annls. Inst. oceanogr. Paris 58: 285-296.

    Google Scholar 

  • Smayda, T. J., 1990. Novel and nuisance blooms in the sea: evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, Amsterdam: 29-41.

    Google Scholar 

  • Sommer, F., H. Stibor, U. Sommer & B. Velimirov, 2000. Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions. Mar. Ecol. Progr. Ser. 199: 43-53.

    Google Scholar 

  • Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobiol. 96: 399-416.

    Google Scholar 

  • Sommer, U., 1994. The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol. Oceanogr. 39: 1680-1688.

    Google Scholar 

  • Sommer, U., 1996a. Nutrient competition experiments with periphyton from the Baltic Sea. Mar. Ecol. Progr. Ser. 140: 161-167.

    Google Scholar 

  • Sommer, U., 1996b. Plankton ecology: two decades of progress. Naturwiss. 38: 293-301.

    Google Scholar 

  • Sommer, U., 1998. From algal competition to animal production: enhanced ecological efficiency of Brachionus with a mixed diet. Limnol. Oceanogr. 43: 1393-1396.

    Google Scholar 

  • Sommer, U., 1999. A comment on the proper use of nutrient ratios in microalgal ecology. Arch. Hydrobiol. 146: 55-64.

    Google Scholar 

  • Sommer, U., 2000. Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak topdown control. Mar. Ecol. Progr. Ser. 197: 19-25.

    Google Scholar 

  • Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472-2503.

    Google Scholar 

  • Suttle, C. A., J. G. Stockner & P. J. Harrison, 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Can. J. Fish. Aquat. Sci. 44: 1768-1774.

    Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Princeton Univ. Press.

  • Tilman, D., R. Kiesling, R. W. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorous, silicon and nitrogen. Arch. Hydrobiol. 106: 473-485.

    Google Scholar 

  • Turpin, D. H. & P. J. Harrison, 1980. Cell size manipulation in natural, marine, planktonic diatom communities. Can. J. Fish. aquat. Sci. 37: 1193-1195.

    Google Scholar 

  • Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic systems. Mar. Ecol. Progr. Ser. 130: 277-293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, U., Stibor, H., Katechakis, A. et al. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production. Hydrobiologia 484, 11–20 (2002). https://doi.org/10.1023/A:1021340601986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021340601986

Navigation