Skip to main content
Log in

Ecological Consequences of Chemically Mediated Prey Perception

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

To locate food, mobile consumers in aquatic habitats perceive and move towards sources of attractive chemicals. There has been much progress in understanding how consumers use chemicals to identify and locate prey despite the elusive identity of odor signals and the complex effects of turbulence on chemical dispersion. This review highlights how integrative studies on behavior, fluid physics, and chemical isolation can be fundamental in elucidating mechanisms that regulate species composition and distribution. We suggest three areas where further research may yield important ecological insights. First, although basic aspects of stimulatory molecules are known, our understanding of how consumers identify prey from a distance remains poor, and the lack of studies examining the influence of distance perception on food preference may result in inaccurate estimation of foraging behavior in the field. Second, the ability of many animals to find prey is greatest in unidirectional, low turbulence flow environments, although recent evidence indicates a trade-off in movement speed versus tracking ability in turbulent conditions. This suggests that predator foraging mode may affect competitive interactions among consumers, and that turbulence provides a hydrodynamic refuge in space or time, leading to particular associations between predator success, prey distributions, and flow. Third, studies have been biased towards examining predator tracking. Current data suggest a variety of mechanisms prey may use to disguise their presence and avoid predation; these mechanisms also may produce associations between prey and flow environments. These examples of how chemical attraction may mediate interactions between consumers and their resources suggest that the ecology of chemically mediated prey perception may be as fundamental to the organization of aquatic communities as the ecology of chemical deterrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arnold, W. S. 1984. The effects of prey size, predator size and sediment composition on the rate of predation of the blue crab Callinectes sapidus Rathbun on the hard clam Mercenaria mercenaria (Linne). J. Exp. Mar. Biol. Ecol. 80:207–219.

    Google Scholar 

  • Britton, J. C. and Morton, B. 1994. Marine carrion and scavengers. Oceanogr. Mar. Biol. Annu. Rev. 32:369–434.

    Google Scholar 

  • Caprio, J., Barnd, J. G., Tetter, J. H., Ventincic, T., Kalinoksi, L., Kohbara, J., Kumazawa, T., and Wegert, S. 1993. The taste system of the channel catfish: from biophysics to behavior. Trends Neurosci. 16:192–197.

    Google Scholar 

  • Carr, W. E. S. 1978. Chemoreception in the shrimp Palaemonetes pugio: The role of amino acids and betaine in elicitation of a feeding response by extracts. Comp. Biochem. Physiol. 61A:127–131.

    Google Scholar 

  • Carr, W. E. S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–27 in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga, (eds.). The Sensory Biology of Aquatic Animals. Springer-Verlag, New York.

    Google Scholar 

  • Carr, W. E. S. and Derby, C. D. 1986a. Behavioral chemoattractants for the shrimp, Palaemontes pugio: identification of active components in food extracts and evidence of synergistic mixture interactions. Chem. Senses 11:49–64.

    Google Scholar 

  • Carr, W. E. S. and C. D. Derby. 1986b. Chemically stimulated feeding behavior in marine animals: the importance of chemical mixtures and the involvement of mixture interactions. J. Chem. Ecol. 12:989–1011.

    Google Scholar 

  • Carr, W. E. S., Netherton, J. C., III, Gleeson, R. A., and Derby, C. D. 1996. Stimulants of feeding behavior in fish: analysis of tissues of diverse marine organisms. Biol. Bull. 190:149–160.

    Google Scholar 

  • Cote, I. M. and Jelnikar, E. 1999. Predator-induced clumping behavior in mussels (Mytilus edulis Linnaeus). J. Exp. Mar. Biol. Ecol. 235:201–211.

    Google Scholar 

  • Curtis, L. A. and Hurd, L. E. 1985. On the broad nutritional requirements of the mud snail Ilyanassa (Nassarius) obsoleta Say, and its polytrophic role in the food web. J. Exp. Mar. Biol. Ecol. 41:289–297.

    Google Scholar 

  • Derby, C.D. and Atema, J. 1988. Chemoreceptor cells in aquatic invertebrates: peripheral mechanisms of chemical signal processing in decapod crustaceans pp. 365–385 in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). The Sensory Biology of Aquatic Animals. Springer-Verlag.

  • Devine, D. V. and Atema, J. 1982. Function of chemoreceptor organs in spatial orientation of the lobster, Homarus americanus: differences and overlap. Biol. Bull. 163: 144–153.

    Google Scholar 

  • Estes, J. A., Tinker, M. T., Williams, T. M., and Doak, D. F. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476.

    Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: a field test of odor-mediated foraging. Ecology 81:784–797.

    Google Scholar 

  • Hamner, P. and Hamner, W.M. 1977. Chemosensory tracking of scent trails by the planktonic shrimp Acetes sibogae australis. Science 195:886–888. 1968 WEISSBURG, FERNER, PISUT, AND SMEE

    Google Scholar 

  • Hay, M. E. 1996. Marine chemical ecology: What's known and what's next? J. Exp. Mar. Biol. Ecol. 200:103–134.

    Google Scholar 

  • Hay, M. E., Lee, R. R., Guieb, R. A., and Bennett, M. M. 1986. Food preference and chemotaxis in the sea urchin Arbacia punctulata. J. Exp. Mar. Biol. Ecol. 96:147–153.

    Google Scholar 

  • Hines, A. H., Haddon, A. M., and Wiechert, L. A. 1990. Guild structure and foraging impact of blue crabs and epibenthic fish in a subestuary of Chesapeake Bay. Mar. Ecol. Prog. Sci. 67:105–126.

    Google Scholar 

  • Kats, L. B. and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.

    Google Scholar 

  • Klinger, T. S. and Lawrence, J.M. 1985. Distance perception of food and the effect of food quantity on feeding behavior of Lytechinus variegatus (Lamarck) (Echinodermata:Echinoidea). Mar. Behav. Physiol. 11:327–344.

    Google Scholar 

  • Lapointe, V. and B. Sainte-Marie. 1992. Currents, predators, and the aggregation of the gastropod Buccinum undatum around bait. Mar. Ecol. Prog. Ser. 85:245–257.

    Google Scholar 

  • Leonard, G. H., Bertness, M. D., and Yund, P. J. 1999. Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14.

    Google Scholar 

  • Mafra-Neto, A. and Carde, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    Google Scholar 

  • Mafra-Neto, A. and CardÉ, R. T. 1998. Rate of realized interception on pheromone pulses in different wind speeds modulates almond moth orientation. J. Comp. Physiol. A. 182:563–572.

    Google Scholar 

  • Manahan, D.T. 1990. Adaptations by marine invertebrate larvae for nutrient acquisition from seawater. Am. Zool. 30:147–160.

    Google Scholar 

  • Mann, K. H. and Lazier, J. R. N. 1991. Dynamics of Marine Ecosystems: Biological–Physical Interactions in the Oceans. Blackwell Scientific Publications, Cambridge, Massachusetts.

    Google Scholar 

  • Mann, K. H., Wright, J. L. C., Welsford, B. E., and Hatfield, E. 1984. Responses of sea urchins Strongylocentrotus droebachiensis (O.F. Muller) to water-borne stimuli from potential predators and potential food algae. J. Exp. Mar. Biol. Ecol. 79:233–244.

    Google Scholar 

  • Mead, K. S. and Koehl, M. A. R. 2000. Stomatopod antennule design: the asymmetry, sampling efficiency and ontogeny of olfactory flicking. J. Exp. Biol. 203:3795–3808.

    Google Scholar 

  • Micheli, F. 1997. Effects of predator foraging behavior on patterns of prey mortality in marine soft bottoms. Ecol. Monogr. 67:203–224.

    Google Scholar 

  • Monismith, S. G., Koseff, J. R., Thompson, J. K., O'Riordan, C. A., and Nepf, H. M. 1990. A study of model bivalve siphonal currents. Limnol. Oceanogr. 35:680–696.

    Google Scholar 

  • Montgomery, J. C., Diebel, C., Halstead, M. B. D., and Downer, J. 1999. Olfactory search tracks in the Antarctic fish, Trematomus bernacchii. Polar Biol. 21:151–154.

    Google Scholar 

  • Moore, P. A. and Atema, J. 1991. Spatial Information in the 3-dimensional fine-structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • Moore, P. A. and Grills, J. L. 1999. Chemical orientation to food by the crayfish, Oronoectes rusticus, influence by hydrodynamics. Anim. Behav. 58:953–963.

    Google Scholar 

  • Moore, P. A., Weissburg, M. J., Parrish, J. M., Zimmer-Faust, R. K., and Gerhardt, G. A. 1994. Spatial distribution of odors in simulated benthic boundary layer flows. J. Chem. Ecol. 20:255–279.

    Google Scholar 

  • Moore, P. A., Grills, J. L., and Schneider, R. W. S. 2000. Habitat-specific signal structure for olfaction: an example from artificial streams. J. Chem. Ecol. 26:565–584.

    Google Scholar 

  • Murlis, J. 1986. The structure of odour plumes, pp. 27–38 in T. L. PPAYNE, M. C. BIRCH, and C. E. J. KENNEDY, (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.

    Google Scholar 

  • Nakaoka, M. 2000. Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth. Ecology 81:1031–1045.

    Google Scholar 

  • Person, W. and Olla, B. 1977. Chemoreception in the blue crab. Callinectes sapidus. Biol. Bull. 153:346–354. CHEMICALLY-MEDIATED PREY PERCEPTION 1969

    Google Scholar 

  • Pennings, S. C. and Bertness, M.D. 2001. Salt marsh communities, pp. 131–157 in M. D. BERTNESS, S. D. GAINES, and M. E. HAY, (eds.). Marine Community Ecology. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Rahman, Y. J., Forward, R. B., and Rittschof, D. 2000. Responses of mud snails and periwinkles to environmental odors and disaccharide mimics of fish odor. J. Chem. Ecol. 26:679–696.

    Google Scholar 

  • Reeder, P. B. and Ache, B.W. 1980. Chemotaxis in the Florida spiny lobster, Panulirus argus. Anim. Behav. 28:831–839.

    Google Scholar 

  • Rittschof, D. 1990. Peptide-mediated behaviors in marine organisms-evidence for a common theme. J. Chemi. Ecol. 16:261–272.

    Google Scholar 

  • Rose, C. D., Sharp, W. C., Kenworthy, W. J., Hunt, J. H., Lyons, W. G., Prager, E. J., Valentine, J. F., Hall, M. O., Whitfield, P. E., and Fourqueran, J. W. 1999. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in outer Florida Bay. Mar. Ecol. Prog. Seri. 190:211–222.

    Google Scholar 

  • Skajaa, K., Ferno, S., and Lokkeborg, H. E. K. 1998. Basic movement pattern and chemo-oriented search towards baited pots in edible crab (Cancer pagurus L.). Hydrobiologia 371/372:143–153.

    Google Scholar 

  • Sorensen, P. W. and Caprio, J. 1997. Chemoreception, pp. 375–405 in D. H. Evans, (ed.). The Physiology of Fishes. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Steullet, P. and Derby, C. D. 1997. Coding of blend ratios of binary mixtures by olfactory neurons in the Florida spiny lobsterm Paulirus argus. J. Comp. Physiol. 180: 123–135.

    Google Scholar 

  • Strong, D. L. 1992. Are trophic cascades all wet? Differentiation and donor control in speciose ecosystems. Ecology 73:747–754.

    Google Scholar 

  • Tamburri, M. N. and Barry, J. P. 1999. Adaptations for scavenging by three diverse bathyl species, Eptatretus stouti, Neptunea amianta and Orchomene obtusus. Deep-Sea Res. 46:2079–2093.

    Google Scholar 

  • Tertschnig, W. P. 1989. Diel activity patterns and foraging dynamics of the sea urchin Tripneustes ventricosus in a tropical seagrass community and a reef environment (Virgin Islands). P.S.Z.N. I: Mar. Ecol. 10:3–21.

    Google Scholar 

  • Trussel, G. C. 1996. Phenotypic plasticity in an intertidal snail: the role of a common predator. Evolution 40:448–454.

    Google Scholar 

  • Vickers, N. J. 2000. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198:203–212.

    Google Scholar 

  • Virnstein, R.W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58:1199–1217.

    Google Scholar 

  • Voigt, R. L. and Atema, J. 1992. Tuning of chemoreceptor cells of the second antennae of the American lobster (Homarus americanus) with a comparison of four of its other chemoreceptor organs. J. Comp. Physiol. A 171:673–683.

    Google Scholar 

  • Webster, D. R. and Weissburg, M. J. 2001. Chemosensory guidance cues in a turbulent odor plume. Limnol. Oceanogr. 46:1048–1053.

    Google Scholar 

  • Webster, D. R., Rahman, S., and Dasi, L. P. (2002) Laser-induced fluorescence measurements of a turbulent plume. ASCE J. Eng. In press.

  • Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.

    Google Scholar 

  • Weissburg, M. J. and Derby, C. D. 1995. Regulation of sex-specific feeding behavior in fiddler crabs: Physiological properties of chemoreceptor neurons in claws and legs of males and females. J. Comp. Physiol. A. 176:513–526.

    Google Scholar 

  • Weissburg, M. J. and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • Weissburg, M. J. and Zimmer-Faust, R. K. 1994. Odor plumes and how blue crabs use them to find prey. J. Expet. Biol. 197:349–375.

    Google Scholar 

  • Weissburg, M. J., Dusenbery, D. B. Ishida, H., Janata, J., Keller, T., Roberts, P. J. W., and Webster, D. R. 2002. A multidisciplinary study of spatial and temporal scales containing information in turbulent chemical plume tracking. J. Environ. Fluid Mech. 2:65–94. 1970 WEISSBURG, FERNER, PISUT, AND SMEE

    Google Scholar 

  • Wight, K., Francis, L., and Eldridge, D. 1990. Food aversion learning by the hermit crab Pagurus granosimanus. Biol. Bull. 178:205–209.

    Google Scholar 

  • Woodin, S. A. 1983. Biotic interactions in recent marine sedimentary environments. pp. 3–38 in M. J. S. Tevesz and P. L. McCall (eds.). Biotic Interactions In Recent and Fossil Benthic Communities. Plenum Press, New York.

    Google Scholar 

  • Wright, L. D. 1989. Benthic boundary layers of estuarine and coastal environments. Rev. Aquat. Sci. 1:75–95.

    Google Scholar 

  • Wright, S. H. and Manahan, D. T. 1989. Integumental nutrient uptake by aquatic organisms. Annu. Rev. Physiol. 51:585–600.

    Google Scholar 

  • Zimmer, R. K., Commins, J. E., and Browne, K. A. 1999. Regulatory effects of environmental chemical signals on search behavior and foraging success. Ecology 80:1432–1446.

    Google Scholar 

  • Zimmer-Faust, R. K. 1989. The relationship between chemoreception and foraging behavior in crustaceans. Limnol. Oceanogr. 34:1367–1374.

    Google Scholar 

  • Zimmer-Faust, R. K. 1993. ATP: a potent prey attractant evoking carnivory. Limnol. Oceanogr. 38:1271–1275.

    Google Scholar 

  • Zimmer-Faust, R. K. and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.

    Google Scholar 

  • Zimmer-Faust, R. K. and Case, J. F. 1982a. Odors influencing foraging behavior of the California spiny lobster,Panulirus interruptus, and other decapod Crustaceans. Mar. Behav. Physiol. 9:35–38.

    Google Scholar 

  • Zimmer-Faust, R. K. and Case, J. F. 1982b. Organization of food search in the kelp crab Pugettia producta (Randall). J. Expe. Mar. Biol. Ecol. 57:237–255.

    Google Scholar 

  • Zimmer-Faust, R. K., Stanfill, J. M., and Collard, S. B. III. 1988. Afast multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1595.

    Google Scholar 

  • Zimmer-Faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow. A field study. Biol. Bull. 188:111–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissburg, M.J., Ferner, M.C., Pisut, D.P. et al. Ecological Consequences of Chemically Mediated Prey Perception. J Chem Ecol 28, 1953–1970 (2002). https://doi.org/10.1023/A:1020741710060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020741710060

Navigation