Skip to main content
Log in

Pharmacokinetic Modeling of Arsenite Uptake and Metabolism in Hepatocytes—Mechanistic Insights and Implications for Further Experiments

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Arsenic (iAs) is a known human carcinogen and widespread contaminant in drinking water. To provide a quantitative framework for experimental design and hypothesis testing, we developed a pharmacokinetic model describing the uptake and methylation of arsenite (AsIII) in primary rat hepatocytes. Measured metabolites were inorganic As (iAs), mono-methylated As (MMA), and di-methylated As (DMA) concentration in cells and media. Transport and methylation parameters were estimated from time course data for iAs, MMA, and DMA at three initial media As(III) concentrations (0.1, 0.4, 1.0 μM). Inhibition of the formation DMA from MMA by As(III) was necessary to adequately describe the data. The data were consistent with multiple types of inhibition, although uncompetitive inhibition provided a slightly better fit. Model simulations indicate that cellular MMA (cMMA) is a key arsenical to measure; measurement of cMMA in the 4–6 hr time range using an initial concentration of 1.4 μM AsIII would provide the best experimental conditions to distinguish uncompetitive from other types of inhibition. Due to the large number of model parameters estimated from the data, we used sensitivity analysis to determine the influential parameters. Use of sensitivity surfaces facilitated the comparison of parameters over time and across doses. Predicted model responses were most sensitive to influx and efflux parameters, suggesting that transport processes are critical in determining cellular arsenical concentrations. These high sensitivities imply that independent experiments to estimate these parameters with greater certainty may be crucial for refinement of this model and to extend this model to describe methylation and transport in human hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. National Research Council (NRC). Arsenic in Drinking Water. National Academy Press: Washington, D.C., 310 pp. (1999).

    Google Scholar 

  2. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for arsenic (update). ATSDR, U.S. Department of Health and Human Services, Atlanta, GA (2000).

    Google Scholar 

  3. Z. Chen, Z.-Y. Wang, and S.-J. Chen. Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol. Ther. 76:141-149 (1997).

    Google Scholar 

  4. E. Marafante, M. Vahter, and J. Envall. The role of the methylation in the detoxication of arsenate in the rabbit. Chem.-Biol. Interact. 56:225-238 (1985).

    Google Scholar 

  5. B. Georis, A. Cardenas, J. P. Buchet, and R. Lauwerys. Inorganic arsenic methylation by rat tissue slices. Toxicology 63:73-84 (1990).

    Google Scholar 

  6. S. M. Healy, E. A. Casarez, F. Ayala-Fierro, and H. V. Aposhian. Enzymatic methylation of arsenic compounds, V. arsenite methyltransferase activity in tissues of mice. Toxicol. Appl. Pharmacol. 148:65-70 (1998).

    Google Scholar 

  7. N. Scott, K. M. Hatelid, N. E. MacKenzie, and D. E. Carter. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 6:102-106 (1993).

    Google Scholar 

  8. M. Delnomdedieu, M. M. Basti, J. D. Otvos, and D. J. Thomas. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem.-Biol. Interact. 90:139-155 (1994).

    Google Scholar 

  9. T. R. Radabaugh and H. V. Aposhian. Enzymatic reduction of arsenic compounds in mammalian systems: reduction of arsenate to arsenite by human liver arsenate reductase. Chem. Res. Toxicol. 13:26-30 (2000).

    Google Scholar 

  10. S. A. Lerman, T. W. Clarkson, and P. J. Gerson. Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state. Chem.-Biol. Interact. 45:401-406 (1983).

    Google Scholar 

  11. W. R. Cullen, B. C. McBride, and J. Reglinski. The reaction of methylarsenicals with thiols: some biological implications. J. Inorg. Biochem. 21:179-194 (1984).

    Google Scholar 

  12. W. R. Cullen, B. C. McBride, and J. Reglinski. The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicals.J. Inorg. Biochem. 21:45-60 (1984).

    Google Scholar 

  13. E. Marafante and M. Vahter. The effect of methyltransferase inhibition on the metabolism of [74As]arsenite in mice and rabbits. Chem.-Biol. Interact. 50:49-57 (1984).

    Google Scholar 

  14. R. Zakharyan, Y. Wu, G. M. Bogdan, and H. V. Aposhian. Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase from rabbit liver. Chem. Res. Toxicol. 8:1029-1038 (1995).

    Google Scholar 

  15. E. Wildfang, R. A. Zakharyan, and H. V. Aposhian. Enzymatic methylation of arsenic compounds: VII. Characterization of hamster liver arsenite and methylarsonic acid methyltransferase activities in vitro. Toxicol Appl. Pharmacol. 152:366-375 (1998).

    Google Scholar 

  16. R. A. Zakharyan, F. Ayala-Fierro, W. R. Cullen, D. M. Carter, and H. V. Aposhian. Enzymatic methylation of arsenic compounds: VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes. Toxicol Appl. Pharmacol. 158:9-15 (1999).

    Google Scholar 

  17. S. Lin, Q. Shi, F. B. Nix, M. Styblo, M. A. Beck, K. M. Herbin-Davis, L. L. Hall, J. B. Simeonsson, and D. J. Thomas. A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J. Biol Chem, in press (2002).

  18. M. Styblo, H. Yamauchi, and D. J. Thomas. Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol. Appl. Pharmacol. 135:172-178 (1995).

    Google Scholar 

  19. M. Styblo, M. Delnomdedieu, and D. J. Thomas. Mono-and dimethylation of arsenic in rat liver cytosol in vitro. Chem.-Biol. Interact. 99:147-164 (1996).

    Google Scholar 

  20. A. Gyurasics, F. Varga, and Z. Gregus. Glutathione-dependent biliary excretion of arsenic. Biochem. Pharmacol. 42:465-468 (1991).

    Google Scholar 

  21. S. V. Kala, M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, and M. W. Lieberman. The MRP2_cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J. Biol. Chem. 275:33404-33408 (2000).

    Google Scholar 

  22. Z. Gregus, A. Gyurasics, and I. Csanaky. Biliary and urinary excretion of inorganic arsenic: monomethylarsonous acid as a major biliary metabolite in rats. Toxicol. Sci. 56:18-25 (2000).

    Google Scholar 

  23. M. Vahter, R. Couch, B. Nermell, and R. Nilsson. Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol. Appl. Pharmacol. 133:262-268 (1995).

    Google Scholar 

  24. M. Vahter and E. Marafante. Reduction and binding of arsenate in marmoset monkeys. Arch. Toxicol. 57:119-124 (1985).

    Google Scholar 

  25. G. M. Bogdan, A. Sampayo-Reyes, and H. V. Aposhian. Arsenic binding proteins of mammalian systems: I. Isolation of three arsenite-binding proteins of rabbit liver. Toxicology 93:175-193 (1994).

    Google Scholar 

  26. M. Styblo and D. J. Thomas. Binding of arsenicals to proteins in an in vitro methylation system. Toxicol. Appl. Pharmacol. 147:1-8 (1997).

    Google Scholar 

  27. T. Kaise, H. Yamauchi, Y. Horiguchi, T. Tani, S. Watanabe, T. Hirayama, and S. Fukui. A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice. Appl. Organo. Chem. 3:273-277 (1989).

    Google Scholar 

  28. K. Yamanaka and S. Okada. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ. Health Perspect. 102:37-40 (1994).

    Google Scholar 

  29. K. Yamanaka, K.Ohtsubo, A. Hasegawa, H. Hayashi, H. Ohji, M. Kanisawa, and S. Okada. Exposure to dimethylarsinic acid, a main metabolite of inorganic arsenics, strongly promotes tumorigenesis initiated by 4-nitroquinoline 1-oxide in the lungs of mice. Carcinogenesis 17:767-770 (1996).

    Google Scholar 

  30. S. Yamamoto, Y. Konishi, T. Matusuda, T. Murai, M.-A. Shibata, I. Matsui-Yuasa, S. Otani, K. Kuroda, G. Endo, and S. Fukushima. Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344_DuCrj rats after pretreatment with five carcinogens. Cancer Res. 55:1271-1276 (1995).

    Google Scholar 

  31. M. Wei, H. Wanibuchi, S. Yamamoto, W. Li, and S. Fukushima. Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats. Carcinogenesis 20:1873-1876 (1999).

    Google Scholar 

  32. M. Styblo, L. Vega, D. R. Germolec, M. I. Luster, L. M. Del Razo, C. Wang, W. R. Cullen, and D. J. Thomas. Metabolism and toxicity of arsenicals in cultured cells. In Arsenic Exposure and Health Effects, (W. R. Chappell, C. O. Abernathy, and R. L. Calderon, eds.), Elsevier Science B.V., New York, pp. 311-323 (1999).

    Google Scholar 

  33. M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, and D. J. Thomas. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 74:289-299 (2000).

    Google Scholar 

  34. S. Lin, L. M. Del Razo, M. Styblo, C. Wang, W. R. Cullen, and D. J. Thomas. Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem. Res. Toxicol. 14:305-311 (2001).

    Google Scholar 

  35. J. S. Petrick, F. Ayala-Fierro, W. R. Cullen, D. E. Carter, and H. V. Aposhian. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 163:203-207 (2000).

    Google Scholar 

  36. M. J. Mass, A. Tennant, B. C. Roop, W. R. Cullen, M. Styblo, D. J. Thomas, and A. D. Kligerman. Methylated trivalent arsenic species may be the proximate or ultimate genotoxic forms of arsenic. Chem. Res. Toxicol 14:355-361 (2001).

    Google Scholar 

  37. K. Krishnan and M. E. Andersen. Physiologically Based Pharmacokinetic Modeling in Toxicology. In: Principles and Methods in Toxicology, 3rd ed. (Hayes, A. W., ed.) Raven Press Ltd., New York, pp. 149-188 (1994).

    Google Scholar 

  38. M. V. Evans and M. E. Andersen. Sensitivity analysis and the design of gas uptake studies. Inhalation Toxicology 7:1075-1094 (1995).

    Google Scholar 

  39. E. M. Kenyon, M. Fea, M. Styblo, and M. V. Evans. Application of modeling techniques to the planning of in vitro arsenic pharmacokinetic studies. Alter. Lab. Animals 29:15-33 (2001).

    Google Scholar 

  40. K. T. Kitchin, L. M. Del Razo, J. L. Brown, W. L. Anderson, and E. M. Kenyon. An integrated pharmacokinetic and pharmacodynamic study of arsenite action. 1. Heme oxygenase induction in rats. Teratogen. Carcinogen. Mutagen. 19:385-402 (1999).

    Google Scholar 

  41. E. M. Kenyon, L. M. Del Razo, J. L. Brown, W. A. Anderson, M. F. Hughes, and K. T. Kitchin. Metabolism and disposition of arsenite (AsIII) and its relationship to heme oxygenase induction in mice. Toxicologist 48(1-S):1046.

  42. M. Styblo, L. M. Del Razo, E. L. LeCluyse, G. A. Hamilton, C. Wang, W. R. Cullen, and D. J. Thomas. Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem. Res. Toxicol. 12:560-565 (1999).

    Google Scholar 

  43. M. Styblo, M. Delnomdedieu, and D. J. Thomas. Biological mechanisms and toxicological consequences of the methylation of arsenic. In: Toxicology of Metals-Biochemical Aspects (R. A. Goyer and M. G. Cherian, eds.), Springer Verlag, Berlin, pp. 407-433 (1995).

    Google Scholar 

  44. M. F. Hughes, M. Menache, and D. J. Thompson. Dose-dependent disposition of sodium arsenate in mice following acute oral exposure. Fund. Appl. Toxicol. 22:80-89 (1994).

    Google Scholar 

  45. E. Marafante, M. Vahter, H. Norin, J. Envall, M. Sandstrom, A. Christakopoulos, and R. Ryhage. Biotransformation of dimethylarsinic acid in mouse, hamster and man. J. Appl. Toxicol. 7:111-117 (1987).

    Google Scholar 

  46. P. O. Seglen. Preparation of isolated rat liver cells. Meth. Cell. Biol. 13:29-83 (1976).

    Google Scholar 

  47. J. P. Buchet and R. Lauwreys. Study of inorganic arsenic methylation by rat in vitro: relevance for the interpretation of observations in man. Arch. Toxicol. 57:125-129 (1985).

    Google Scholar 

  48. A. Cornish-Bowden. Fundamental of Enzyme Kinetics. Portland Press Ltd., London (1995).

    Google Scholar 

  49. J. V. Beck and K. J. Arnold. Parameter Estimation in Engineering and Science. John Wiley & Sons, New York (1977).

    Google Scholar 

  50. R. A. Yetter, F. L. Dryer, and H. Rabitz. Some interpretive aspects of elementary sensitivity gradients in combustion kinetic modeling. Combust. Flame 59:107-133 (1985).

    Google Scholar 

  51. S. Mann, P. O. Droz, and M. Vahter. A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicol. Appl. Pharmacol. 137:8-22 (1996).

    Google Scholar 

  52. S. Mann, P. O. Droz, and M. Vahter. A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and application in humans. Toxicol. Appl. Pharmacol. 140:471-486 (1996).

    Google Scholar 

  53. D. Yu. A physiologically based pharmacokinetic model of inorganic arsenic. Reg. Toxicol. Pharmacol. 29:128-141 (1999).

    Google Scholar 

  54. H. V. Aposhian. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Ann. Rev. Pharmacol. and Toxicol. 37:397-419 (1997).

    Google Scholar 

  55. M. L. Gargas, H. J. Clewell, and M. E. Andersen. Gas uptake inhalation techniques and rates of metabolism of chloromethanes, chloroethanes, and chloroethylenes in the rat. Inhal. Toxicol. 2:295-319 (1990).

    Google Scholar 

  56. M. V. Evans, W. D. Crank, H.-M. Yang, and J. E. Simmons. Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 128:36-44 (1994).

    Google Scholar 

  57. National Research Council (NRC). Science and Judgment in Risk Assessment. National Academy Press: Washington, D.C., 651pp. (1994).

    Google Scholar 

  58. Z. Wang, S. Dey, B. P. Rosen, and T. G. Rossman. Efflux-mediated resistance to arsenicals in arsenic-resistant and-hypersensitive Chinese hamster cells. Toxicol. Appl. Pharmacol. 137:112-119 (1996).

    Google Scholar 

  59. A. M. Azzarolo, G. Ritchie, and G. A. Quamme. Some characteristics of sodium-independent phosphate transport across renal basolateral membranes. Biochim. Biophys. Acta 1064:229-234 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easterling, M.R., Styblo, M., Evans, M.V. et al. Pharmacokinetic Modeling of Arsenite Uptake and Metabolism in Hepatocytes—Mechanistic Insights and Implications for Further Experiments. J Pharmacokinet Pharmacodyn 29, 207–234 (2002). https://doi.org/10.1023/A:1020248922689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020248922689

Navigation