Skip to main content
Log in

Nitrous oxide decomposition and reduction over copper catalysts supported on various types of carbonaceous materials

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Copper supported on three different allotropic forms of carbon materials have been prepared and evaluated as catalysts for the N2O decomposition and reduction reactions. It was found that all the catalysts underwent severe deactivation during the N2O decomposition reaction due to the gasification of carbon substrates. This behavior was particularly evident when activated carbon was used as the support medium. The chemical identity of the active entity involved in the carbon gasification process is believed to consist of a mixture of Cu+ and Cu2+ species and, according to the well established mechanism, the reaction proceeds in such a manner so that the surface of the catalyst undergoes a redox cycle at the gas/solid carbon interface. The introduction of CO into the system was shown to result not only in an enhancement in the activity of the desired N2O decomposition reaction, but also served to inhibit the deleterious carbon gasification process. In addition, this procedure stabilized the copper particles in the metallic state, which is the active species responsible for the dissociation of N2O. Copper dispersed on a diamond substrate appeared to attain the highest activity for the N2O reduction reaction, a feature that is associated with the ability of the metal to undergo a wetting and spreading action on the support surface, possibly resulting in an epitaxial relationship between the two components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Armor, Appl. Catal. B 1 (1992) 221.

    Google Scholar 

  2. K.C. Taylor, Catal. Rev. Sci. Eng. 35 (1993) 457.

    Google Scholar 

  3. Y. Li and J.N. Armor, Appl. Catal. B 1 (1992) L21.

    Google Scholar 

  4. Y.F. Chang, J.G. McCarty and Y.L. Zhang, Catal. Lett. 34 (1995) 163.

    Google Scholar 

  5. F. Kapteijn, J. Rodriguez-Mirasol and J.A. Moulijn, Appl. Catal. B 9 (1996) 25.

    Google Scholar 

  6. D.W. McKee, Carbon 8 (1970) 623.

    Google Scholar 

  7. D.W. McKee, Carbon 12 (1974) 453.

    Google Scholar 

  8. D.W. McKee and D. Chatterji, Carbon 13 (1975) 381.

    Google Scholar 

  9. D.W. McKee, in: Chemistry and Physics of Carbon, Vol. 16, ed. P.L. Walker, Jr. (Dekker, New York, 1981) p. 1.

    Google Scholar 

  10. R.T.K. Baker, J. Catal. 78 (1982) 473.

    Google Scholar 

  11. A.J. Lopez-Peinado, J. Rivera-Utrilla, F.J. Lopez-Garzon, I. Fernandez-Morales and C. Moreno-Castilla, Fuel 65 (1986) 1419.

    Google Scholar 

  12. M.S. Kim, N.M. Rodriguez and R.T.K. Baker, J. Catal. 134 (1992) 253.

    Google Scholar 

  13. T.L. Dhami, L.M. Manocha and O.P. Bahl, Carbon 29 (1991) 51.

    Google Scholar 

  14. C.S. Swamy and J. Christopher, Catal. Rev. Sci. Eng. 34 (1992) 409.

    Google Scholar 

  15. M. Schiavello, F. Pepe and S. De Rossi, Z. Phys. Chem. 92 (1974) 109.

    Google Scholar 

  16. R. Sundararajan and V. Srinivasan, Appl. Catal. 73 (1991) 165.

    Google Scholar 

  17. V.S. Babenko and R.A. Buyanov, Kinet. Catal. 36 (1995) 524.

    Google Scholar 

  18. R.T.K. Baker, in: Carbon and Coal Gasification, ATO ASI Series, No. 105, eds. J.L. Figueiredo and J.A. Moulijn (Nijhoff, Dordrecht, 1986) p. 31.

    Google Scholar 

  19. R.T.K. Baker, J. Adhesion 52 (1995) 13.

    Google Scholar 

  20. R.T.K. Baker, Carbon 24 (1986) 715.

    Google Scholar 

  21. R.T.K. Baker and J.J. Chludzinski, Carbon 19 (1981) 524.

    Google Scholar 

  22. B. Neumann, C. Kroger and E. Fingas, Z. Anorg. Chem. 197 (1931) 321.

    Google Scholar 

  23. F.J. Long and K.W. Sykes, Proc. Roy. Soc. Ser. A 215 (1952) 100.

    Google Scholar 

  24. N.D.S. Canning, D. Gutka and R.J. Madix, Surf. Sci. 141 (1984) 240.

    Google Scholar 

  25. D.W. McKee, Carbon 8 (1970) 131.

    Google Scholar 

  26. J.W. Patrick and A. Walker, Carbon 12 (1974) 507.

    Google Scholar 

  27. S.S.D. Shepelev and K.G. Ione, React. Kinet. Catal. Lett. 23 (1983) 319.

    Google Scholar 

  28. H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson and J.H. Lunsford, J. Am. Chem. Soc. 106 (1984) 4117.

    Google Scholar 

  29. K.J. Zhen, M.M. Khan, C.H. Mac, K.B. Lewis and G.A. Somorjai, J. Catal. 94 (1985) 501.

    Google Scholar 

  30. H. Teng and H.C. Lin, Carbon 35 (1997) 1811.

    Google Scholar 

  31. J. Ma, N.M. Rodriguez, M.A. Vannice and R.T.K. Baker, J. Catal., in press.

  32. H. Marsh, E. O'Hair and W.F.K. Wynne-Jones, Nature 198 (1963) 1195.

    Google Scholar 

  33. P. Pattabiraman, N.M. Rodriguez, B.Z. Jang and R.T.K. Baker, Carbon 28 (1990) 867.

    Google Scholar 

  34. K.J. Huttinger and A. Michenfelder, in: Carbon and Coal Gasification, NATO ASI Series, No. 105, eds. J.L. Figueiredo and J.A. Moulijn (Nijhoff, Dordrecht, 1986).

    Google Scholar 

  35. F. Kapteijn, A.J.C. Mierop, G. Abbel and J.A. Moulijn, J. Chem. Soc., Chem. Commun. (1984) 1085.

  36. Y.H. Hu and E. Ruckenstein, J. Catal. 172 (1997) 110.

    Google Scholar 

  37. M. Iwamoto, S. Ohura and S. Kagawa, J. Chem. Soc., Chem. Commun. (1981) 842.

  38. R.M. Dell, F.S. Stone and P.F. Tiley, Trans. Faraday Soc. 49 (1953) 201.

    Google Scholar 

  39. T. Yamashita and M.A. Vannice, J. Catal. 161 (1996) 254.

    Google Scholar 

  40. J. Christopher and C.S. Swamy, J. Mol. Catal. 62 (1990) 69.

    Google Scholar 

  41. J.W. Evans, M.S. Wainwright, A. Bridgewater and D. Young, J. Appl. Catal. 7 (1983) 75.

    Google Scholar 

  42. Th.J. Osinga, B.G. Linsen and W.P. van Beet, J. Catal. 7 (1976) 277.

    Google Scholar 

  43. G. Sengupta, D.K. Gupta, M.L. Kundu and S.P. Sen, J. Catal. 67 (1981) 223.

    Google Scholar 

  44. A. Dandekar, R.T.K. Baker and M.A. Vannice, Carbon 36 (1998) 1821.

    Google Scholar 

  45. A. Dandekar, Ph.D. thesis, The Pennsylvania State University (1998).

  46. F. Kapteijn, J. Rodriguez-Mirasol, G. Mul, G. Marban and J.A. Moulijn, in: Proceedings of 11th Congress on Catalysis, eds. J.W. Hightower and W.N. Delgass (Elsevier, Amsterdam, 1996).

    Google Scholar 

  47. R.W. McCabe and C. Wong, J. Catal. 121 (1990) 422.

    Google Scholar 

  48. N.J.J. Dekker, J.A.A. Hoorn, S. Stegenga, F. Kapteijn and J.A. Moulijn, AIChE J. 38 (1992) 385.

    Google Scholar 

  49. A. Kadkhodayan and A. Brenner, J. Catal. 117 (1989) 311.

    Google Scholar 

  50. A.L. Boyce, S.R. Graville, P.A. Sermon and M.S.W. Vong, React. Kinet. Catal. Lett. 44 (1991) 1.

    Google Scholar 

  51. A.L. Boyce, S.R. Graville, P.A. Sermon and M.S.W. Vong, React. Kinet. Catal. Lett. 44 (1991) 13.

    Google Scholar 

  52. K.S. Chan, J. Ma, S. Jaenicke, G.K. Chuah and Y. Lee, Appl. Catal. A 107 (1994) 201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Rodriguez, N., Vannice, M. et al. Nitrous oxide decomposition and reduction over copper catalysts supported on various types of carbonaceous materials. Topics in Catalysis 10, 27–38 (2000). https://doi.org/10.1023/A:1019199614339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019199614339

Navigation