Skip to main content
Log in

Phage Therapy in Terms of Bacteriophage Genetics: Hopes, Prospects, Safety, Limitations

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The appearance and spreading of multidrug-resistant bacterial pathogens is a consequence of the large-scale use of antibiotics in medicine. In view of this, claims for the phage therapy were renewed: in recent studies, the natural phages and their products neutralizing various proteins, as well as the bacterial products often controlled by defective prophages (bacteriocins) were applied for treatment of bacterial infections. Constructs obtained by gene engineering are increasingly used to change bacteriophage properties to expand the spectrum of their lytic activity and to eliminate therapeutic drawbacks of some natural phages. In this review, the problem of phage therapy is discussed in general with respect to bacteriophage properties, their genetics, structure, evolution, taking into account long-term experience of the author in the field of bacteriophage genetics. Note that the general concept of phage therapy should be developed to ensure long-term, efficient and harmless phage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smith, H.W. and Huggins, M.B., Successful Treatment of Experimental Escherichia coli Infections in Mice Using Phage: Its General Superiority over Antibiotics, J. Gen. Microbiol., 1982, vol. 128, pp. 307-318.

    Google Scholar 

  2. Smith, H.W., Huggins, M.B., and Shaw, K.M., The Control of Experimental Escherichia coli Diarrhoea in Calves by Means of Bacteriophages, J. Gen. Microbiol., 1987, vol. 133, pp. 1111-1126.

    Google Scholar 

  3. Smith, H.W., Huggins, M.B., and Shaw, K.M., Factors Influencing the Survival and Multiplication of Bacteriophages in Calves and in Their Environment, J. Gen. Microbiol., 1987, vol. 133, pp. 1127-1135.

    Google Scholar 

  4. Barrow, P.A. and Soothill, J.S., Bacteriophage Therapy and Prophylaxis: Rediscovery and Renewed Assessment of the Potential, Trend. Microbiol., 1997, vol. 5, pp. 268-271.

    Google Scholar 

  5. Barrow, P., Lovell, A., and Berchieri, A., Jr., Use of Lytic Bacteriophage for Control of Experimental Escherichia coli Septicemia and Meningitis in Chickens and Calves, Clin. Diagn. Lab. Immunol., 1998, vol. 5, pp. 294-298.

    Google Scholar 

  6. Merril, C.R., Biswas, B., Carlton, R., et al., Long Circulating Bacteriophages as Antibacterial Agents, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 3188-3192.

    Google Scholar 

  7. Freizon, E.V., Kopylova, Yu.I., Cheremukhina, L.V., and Krylov, V.N., The Effect of IncP-2 Plasmids on Propagation of Pseudomonas aeruginosa Bacteriophages, Genetika (Moscow), 1989, vol. 25, no. 77, 1168-1178.

    Google Scholar 

  8. Shapiro, J.A., Transposable Elements as the Key to a 21st Century View of Evolution, Genetica (The Hague), 1999, vol. 107, pp. 171-179.

    Google Scholar 

  9. D'Herelle, F., Sur un microbe invisible antagoniste des bacilles dysenteriques, C. R. Acad. Sci., 1917, vol. 165, pp. 373-375.

    Google Scholar 

  10. Matusis, Z.E., Mel'nikov, V.D., and Gerasimov, A., Effectiveness of Phagotherapy in Experimental Infection with Proteus, Zh. MEI, 1967, vol. 44, no. 2, pp. 100-103.

    Google Scholar 

  11. Kochetkova, V.A., Mamontov, A.S., Moskovtseva, R.L., et al., Phagotherapy in Postoperative Pyo-Inflammatory Complications in Oncological Patients, Sov. Med., 1989, no. 6, pp. 23-26.

  12. Perepanova, T.S., Darbeeva, O.S., Kotlyarova, G.A., et al., Effectiveness of Bacteriophage Preparations in Treatment of Urological Inflammations, Urol. Nefrol., 1995, no. 5, pp. 14-17.

  13. Mindich, L., Qiao, X., Qiao, J., et al., Isolation of Additional Bacteriophages with Genomes of Segmented Double-Stranded RNA, J. Bacteriol., 1999, vol. 181, pp. 4505-4508.

    Google Scholar 

  14. Hoogstraten, D., Qiao, X., Sun, Y., et al., Characterization of ϕ8, a Bacteriophage Containing Three Double-Stranded RNA Genomic Segments and Distantly Related to ϕ6, Virology, 2000, vol. 272, pp. 218-224.

    Google Scholar 

  15. Qiao, X., Qiao, J., Onodera, S., and Mindich, L., Characterization of ϕ13, a Bacteriophage Related to ϕ6 and Containing Three dsRNA Genomic Segments, Virology, 2000, vol. 275, pp. 218-224.

    Google Scholar 

  16. Krylov, V.N., Yanenko, A.S., and Cheremukhina, L.V., Variation in Alleles of Genes That Control the Specificity of Adsorption in a Group of Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1986, vol. 22, no. 7, pp. 1093-1098.

    Google Scholar 

  17. Taylor, A.L., Bacteriophage-Induced Mutation in E. coli, Proc. Natl. Acad. Sci. USA, 1963, vol. 50, pp. 1043-1051.

    Google Scholar 

  18. Hull, R.A., Gill, G.S., and Curtiss, R., Genetic Characterization of Mu-like Bacteriophage D108, J. Virol., 1978, vol. 27, pp. 513-518.

    Google Scholar 

  19. Krylov, V.N., Bogush, V.G., and Shapiro, J., Pseudomonas aeruginosa Bacteriophages Similar in DNA Structure to Phage Mu1: 1. General Description, Localization of Endonuclease-Sensitive Sites, and Structure of Homoduplexes of Phage D3112, Genetika (Moscow), 1980, vol. 16, no. 5, pp. 824-832.

    Google Scholar 

  20. Krylov, V.N., Tolmachova, T.O., and Akhverdian, V.Z., DNA Homology in Species of Bacteriophages Active on Pseudomonas aeruginosa, Arch. Virol., 1993, vol. 131, nos. 1–2, pp. 141-151.

    Google Scholar 

  21. Krylov, V.N., Mit'kina, L.N., Pleteneva, E.A., and Aleshin, V.V., Cryptic Transposable Phages of Pseudomonas aeruginosa, Genetika (Moscow), 1995, vol. 31, no. 11, pp. 1507-1511.

    Google Scholar 

  22. Krylov, V., These Puzzling Pseudomonade Transposon Phages, Science in Russia, 1998, no. 1, pp. 38-44.

  23. Krylov, V.N., Solov'eva, T.I., and Burkal'tseva, M.V., Pseudomonas aeruginosa PAO1 Mycoid Clones That Survive after Induction of Transposable Prophages, Genetika (Moscow), 1995, vol. 31, no. 10, pp. 1375-1379.

    Google Scholar 

  24. Pleteneva, E.N., Mit'kina, L.N., Burkal'tseva, M.V., and Krylov, V.N., Comparative Frequency of ImiR-Resistant Pseudomonas aeruginosa Mutants Resulting from Infection of Bacteria with Various Transposable Phages, Genetika (Moscow), 1999, vol. 35, no. 7, pp. 886-890.

    Google Scholar 

  25. Krylov, V.N., Dzhusupova, A.B., Akhverdyan, V.Z., et al., Study of the Particle Morphology and the Genome Structure of Pseudomonas putida Bacteriophages for the Purpose of Their Classification, Genetika (Moscow), 1989, vol. 25, no. 9, pp. 1559-1570.

    Google Scholar 

  26. Ackermann, H.-W., DuBow, M.S., Jarvis, A.W., et al., The Species Concept and Its Application to Tailed Phages, Arch. Virol., 1992, vol. 124, pp. 69-82.

    Google Scholar 

  27. Susskind, M. and Botstein, D., Molecular Genetics of Bacteriophage P22, Microbiol. Rev., 1978, vol. 42, pp. 385-413.

    Google Scholar 

  28. Krylov, V.N., Sharibzhanova, T.O., and Akhverdyan, V.Z., Characterization of Homologous Regions of Temperate Pseudomonas aeruginosa Bacteriophages of Several Species, Genetika (Moscow), 1992, vol. 28, no. 3, pp. 33-42.

    Google Scholar 

  29. Mondello, F.J. and Miller, R.V., Identification of Pseudomonas Plasmids Able to Suppress the Lysogeny Establishment: Deficiency Les-Phenotype, Plasmid, 1984, vol. 11, pp. 185-187.

    Google Scholar 

  30. Korsten, K.H., Tomkiewicz, C.V., and Hausmann, R., The Strategy of Infection as a Criterion for Phylogenetic Relationships of Non-coli Phages Morphologically Similar to Phage T7, J. Gen. Virol., 1979, vol. 43, pp. 57-73.

    Google Scholar 

  31. Akhverdyan, V.Z., Khrenova, E.A., Lobanov, A.O., and Krylov, V.N., The Role of Divergence in the Evolution of a Group of Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1998, vol. 34, no. 6, pp. 846-849.

    Google Scholar 

  32. Akhverdyan, V.Z., Khrenova, E.A., and Krylov, V.N., The Recombinational Origin of Natural Group B3 Transposable Phages Active in Pseudomonas aeruginosa, Genetika (Moscow), 1997, vol. 33, no. 5, pp. 697-700.

    Google Scholar 

  33. Campbell, A., Defective Bacteriophages and Incomplete Prophages, Comprehensive Virology, Fraenkel-Conrat, H. and Wagner, R.R., Eds., New York: Plenum, 1977, vol. 8, p. 259.

    Google Scholar 

  34. Botstein, D., A Theory of Modular Evolution for Bacteriophages, Ann. N. Y. Acad. Sci., 1980, vol. 354, pp. 484-490.

    Google Scholar 

  35. Krylov, V.N., Akhverdyan, V.Z., Bogush, V.G., et al., Modular Genome Structure of Pseudomonas aeruginosa Transposable Phages, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 724-734.

    Google Scholar 

  36. Krylov, V.N., Akhverdyan, V.Z., Khrenova, E.A., et al., Two Types of Molecular Structure (Composition) within a Single Species of Pseudomonas aeruginosa Transposable Bacteriophages, Genetika (Moscow), 1986, vol. 22, no. 11, pp. 2637-2648.

    Google Scholar 

  37. Lucchini, S., Desiere, F., and Brussow, H., Comparative Genomics of Streptococcus thermophilus Phage Species Supports a Modular Evolution Theory, J. Virol., 1999, vol. 73, pp. 8647-8756.

    Google Scholar 

  38. Kutter, E., Stidham, T., Guttman, B., et al., Genomic Map of Bacteriophage T4, Molecular Biology of Bacteriophage T4, Karam, J.D., Ed., Washington: Am. Soc. Microbiol., 1994, pp. 491-519.

    Google Scholar 

  39. Kutter, E., Gachechiladze, K., Poglazov, A., et al., Evolution of T4-Related Phages, Virus Genes, 1996, vol. 11, pp. 285-297.

    Google Scholar 

  40. Kropnski, A.M., Sequence of the Genome of the Temperate, Serotype-Converting Pseudomonas aeruginosa Bacteriophage D3, J. Bacteriol., 2000, vol. 182, pp. 6066-6074.

    Google Scholar 

  41. Howe, M., Phage Mu: An Overview, Phage Mu, Symonds, N., et al., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1987, pp. 25-39.

    Google Scholar 

  42. Yanenko, A.S., Bekkarevich, A.O., Gerasimov, V.A., and Krylov, V.N., A Genetic Map of Pseudomonas aerugi-nosa Transposable Bacteriophage D3112, Genetika (Moscow), 1988, vol. 24, no. 12, pp. 2120-2126.

    Google Scholar 

  43. Bidnenko, E.M., Akhverdyan, V.Z., Khrenova, E.A., et al., Genetic Control of Morphogenesis of Pseudomonas aeruginosa Transposable Phage D3112, Genetika (Moscow), 1989, vol. 25, no. 12, pp. 2126-2137.

    Google Scholar 

  44. Nakayama, K., Kanaya, S., Ohnishi, M., et al., The Complete Nucleotide Sequence of ϕCTX, a Cytotoxin-Converting Phage of Pseudomonas aeruginosa: Implications for Phage Evolution and Horizontal Gene Transfer via Bacteriophages, Mol. Microbiol., 1999, vol. 31, pp. 399-419.

    Google Scholar 

  45. Pajunen, M., Kiljunen, S., and Skurnik, M., Bacteriophage ϕYeO3-12, Specific for Yersinia enterocolitica Serotype O:3, Is Related to Coliphages T3 and T7, J. Bacteriol., 2000, vol. 182, pp. 5114-5120.

    Google Scholar 

  46. Brussow, H., Bruttin, A., Desiere, F., et al., Molecular Ecology and Evolution of Streptococcus thermophilus Bacteriophages-A Review, Virus Genes, 1998, vol. 16, pp. 95-109.

    Google Scholar 

  47. Young, K.K., Edlin, G., and Wilson, G.G., Genetic Analysis of Bacteriophage T4: Transducing Bacteriophages, J. Virol., 1982, vol. 41, pp. 345-347.

    Google Scholar 

  48. Young, K.K. and Edlin, G., Physical and Genetic Analysis of Bacteriophage T4: Generalized Transduction, Mol. Gen. Genet., 1983, vol. 192, pp. 241-246.

    Google Scholar 

  49. Morgan, A.F., Transduction of Pseudomonas aeruginosa with a Mutant of Bacteriophage E79, J. Bacteriol., 1979, vol. 139, pp. 137-140.

    Google Scholar 

  50. Dzhusupova, A.B., Plotnikova, T.G., and Krylov, V.N., Detection of the Transduction of Pseudomonas aeruginosa Chromosomal Markers by Virulent Bacteriophage ϕKZ in the Presence of Plasmid RMS148, Genetika (Moscow), 1982, vol. 18, no. 11, pp. 1799-1802.

    Google Scholar 

  51. Gorbunova, S.A., Akhverdyan, V.Z., Cheremukhina, L.V., and Krylov, V.N., Efficient Method for Transduction with Virulent Phage Pf16 with the Use of Specific Mutants of Pseudomonas putida PpG1, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 872-874.

    Google Scholar 

  52. Leffers, G. and Rao, V.B., A Discontinuous Headful Packaging Model for Packaging Less Than Headful Length DNA Molecules by Bacteriophage T4, J. Mol. Biol., 1996, vol. 24, pp. 838-845.

    Google Scholar 

  53. Rao, V.B., Thaker, V., and Black, L.W., A Phage T4 in vitro Packaging System for Cloning Long DNA Molecules, Gene, 1992, vol. 113, pp. 25-33.

    Google Scholar 

  54. Finlay, B.B. and Falkow, S., Common Themes in Microbial Pathogenicity Revisited, Microbiol. Mol. Biol., 1997, vol. 61, pp. 136-169.

    Google Scholar 

  55. Vander Byl, C. and Kropinski, A.M., Sequence of the Genome of Salmonella Bacteriophage P22, J. Bacteriol., 2000, vol. 182, pp. 6472-6481.

    Google Scholar 

  56. Kuzio, J. and Kropinski, A.M., O-Antigen Conversion in Pseudomonas aeruginosa PAO1 by Bacteriophage D3, J. Bacteriol., 1983, vol. 155, pp. 203-212.

    Google Scholar 

  57. Coleman, D.C., Sullivan, D.J., Russell, R.J., et al., Staphylococcus aureus Bacteriophages Mediating the Simultaneous Lysogenic Conversion of β-Lysin, Staphylokinase and Enterotoxin A: Molecular Mechanism of Triple Conversion, J. Gen. Microbiol., 1989, vol. 135, pp. 1679-1697.

    Google Scholar 

  58. Karaolis, D.K., Somara, S., Maneval, D.R., et al., A Bacteriophage Encoding a Pathogenicity Island, a Type-IV Pilus and a Phage Receptor in Cholera Bacteria, Nature, 1999, vol. 399, no. 6734, pp. 375-379.

    Google Scholar 

  59. Krylov, V.N., Solov'eva, T.I., Burkal'tseva, M.V., and Mit'kina, L.N., The Origin and Properties of Pseudomonas aeruginosa PAO1 Clones That Survive after Induction of Transposable Prophages, Genetika (Moscow), 1995, vol. 31, no. 8, pp. 1065-1072.

    Google Scholar 

  60. Krylov, V.N. and Zhazykov, I.Zh., Pseudomonas aeruginosa Bacteriophage ϕKZ as a Possible Modes for Studying the Genetic Control of Morphogenesis, Genetika (Moscow), 1978, vol. 14, no. 4, pp. 678-685.

    Google Scholar 

  61. Kutter, E., Kellenberger, E., Carlson, K., et al., Effects of Bacterial Growth Conditions and Physiology on T4 Infection, Molecular Biology of Bacteriophage T4, Karam, J.D, Ed., Washington: Am. Soc. Microbiol., 1994, pp. 406-420.

    Google Scholar 

  62. Doermann, A.D., Lysis and Lysis Inhibition with Escherichia coli Bacteriophage, J. Bacteriol., 1948, vol. 55, pp. 257-275.

    Google Scholar 

  63. Slopek, S., Durlakova, I., Weber-Dabrowska, B., et al., Results of Bacteriophage Treatment of Suppurative Bacterial Infections: I. General Evaluation of the Results, Arch. Immunol. Ther. Exp., 1981, vol. 31, pp. 267-291.

    Google Scholar 

  64. Slopek, S., Durlakova, I., Weber-Dabrowska, B., et al., Results of Bacteriophage Treatment of Suppurative Bacterial Infections: II. Detailed Evaluation of the Results, Arch. Immunol. Ther. Exp., 1981, vol. 31, pp. 293-327.

    Google Scholar 

  65. Slopek, S., Durlakova, I., Dabrowski, M., et al., Results of Bacteriophage Treatment of Suppurative Bacterial Infections: III. Detailed Evaluation of the Results Obtained in Further 150 Cases, Arch. Immunol. Ther. Exp., 1984, vol. 32, pp. 317-335.

    Google Scholar 

  66. Weber-Dabrowska, B., Dabrowski, M., Slopek, S., et al., Studies on Bacteriophage Penetration in Patients Subjected to Phage Therapy, Arch. Immunol. Ther. Exp., 1987, vol. 35, pp. 563-568.

    Google Scholar 

  67. Delves-Broughton, J., Blackburn, P., Evans, R.J., and Hugenholtz, J., Applications of the Bacteriocin, Nisin, Antonie Van Leeuvenhoek, 1996, vol. 69, pp. 193-202.

    Google Scholar 

  68. Smith, H.W. and Huggins, M.B., Treatment of Experimental Escherichia coli Infection in Mice with Colicin V, J. Med. Microbiol., 1977, vol. 10, pp. 479-482.

    Google Scholar 

  69. Farkas-Himsley, H., Hill, R., Rosen, B., et al., The Bacterial Colicin Active against Tumor Cells in Vitro and in Vivo Is Verotoxin 1, Proc. Natl. Acad. Sci. USA, 1995, vol. 18, pp. 6996-7000.

    Google Scholar 

  70. Hill, R.P. and Farkas-Himsley, H., Further Studies of the Action of a Partially Purified Bacteriocin against a Murine Fibrosarcoma, Cancer Res., 1991, vol. 1, pp. 1359-1365.

    Google Scholar 

  71. Jett, B.D. and Gilmore, M.S., The Growth-Inhibitory Effect of the Enterococcus faecalis Bacteriocin Encoded by PAD1 Extends to the Oral Streptococci, J. Dent. Res., 1990, vol. 69, pp. 1640-1645.

    Google Scholar 

  72. Hillman, J.D., Dzuback, A.L., and Andrews, S.W., Colonization of the Human Oral Cavity by a Streptococcus Mutants Producing Increased Bacteriocin, J. Dent. Res., 1987, vol. 66, pp. 1092-1094.

    Google Scholar 

  73. Tetart, F., Desplats, C., and Krisch, H.M., Genome Plasticity in the Distal Tail Fiber Locus of the T-Even Bacte-riophage: Recombination between Conserved Motifs Swaps Adhesin Specificity, J. Mol. Biol., 1998, vol. 282, pp. 543-546.

    Google Scholar 

  74. Tetart, F., Repoila, F., Monod, C., and Krisch, H.M., Bacteriophage T4 Host Range Is Expanded by Duplications of a Small Domain of the Tail Fiber Adhesin, J. Mol. Biol., 1996, vol. 258, pp. 726-731.

    Google Scholar 

  75. Bouet, J.Y., Campo, N.J., Krisch, H.M., and Louarn, J.M., The Effects on Escherichia coli of Expression of the Cloned Bacteriophage T4 Nucleoid Disruption (ndd) Gene, Mol. Microbiol., 1996, vol. 20, pp. 519-528.

    Google Scholar 

  76. Bouet, J.Y., Krisch, H.M., and Louarn, J.M., Ndd, the Bacteriophage T4 Protein That Disrupts the Escherichia coli Nucleoid, Has a DNA-Binding Activity, J. Bacteriol., 1998, vol. 180, pp. 5227-5230.

    Google Scholar 

  77. Dressman, H.K. and Drake, J., Lysis and Lysis Inhibition in Bacteriophage T4: RV Mutations Reside in the Holin t Gene, J. Bacteriol., 1999, vol. 181, pp. 4391-4396.

    Google Scholar 

  78. Tetart, F., Desplats, C., Kutateladze, M., et al., Phylogeny of the Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages, J. Bacteriol., 2001, vol. 183, pp. 358-366.

    Google Scholar 

  79. Norris, J.S., Westwater, C., and Shofield, D., Prokaryotic Gene Therapy to Combat Multidrug Resistant Bacterial Infection, Gene Ther., 2000, vol. 7, pp. 723-725.

    Google Scholar 

  80. Cao, J., Sun, Y., Berglindh, T., et al., Helicobacter pylori Antigen-Binding Fragments Expressed on the Filamentous M13 Phage Bacterial Growth, Biochim. Biophys. Acta, 2000, vol. 1474, pp. 107-113.

    Google Scholar 

  81. Krylov, V.N., Smirnova, A., Minenkova, I.B., et al., Pseudomonas Bacteriophage ϕKZ Contains an Inner Body in Its Capsid, Can. J. Microbiol., 1984, vol. 30, pp. 758-762.

    Google Scholar 

  82. Kulakov, L.A., Gorelyshev, A.G., Kul'ba, A.M., and Krylov, V.N., Study of the Pseudomonas putida PpG1 Resistance to Various Bacteriophages, Genetika (Moscow), 1981, vol. 17, no. 10, pp. 1737-1744.

    Google Scholar 

  83. Krylov, V.N., Rasskazchikova, S.A., and Al'nikin, A.F., Selection and Properties of an “Absolutely Phage-Resistant” Mutant of Pseudomonas putida PpG1, Genetika (Moscow), 1996, vol. 32, no. 3, pp. 348-353.

    Google Scholar 

  84. Casiens, S., Hatfull, G., and Hendrix, R., Evolution of dsDNA Tailed-Bacteriophage Genomes, Sem. Virol., 1992, vol. 3, pp. 383-397.

    Google Scholar 

  85. Hendrix, R.W., Smith, M.C.M., Burns, R.N., et al., Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World's a Phage, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 2192-2197.

    Google Scholar 

  86. Tsygankov, Yu.D. and Krylov, V.N., New Lambdoid Phages of E. coli: Isolation, Immunity Groups, and Recombination with Phage λ, Sov. Genet., 1976, vol. 12, pp. 104-114.

    Google Scholar 

  87. Krylov, V.N., Rebentish, B.A., Debabov, V.G., et al., Study on the Restriction of DNA from a Group of Novel Lambdoid Bacteriophages by EcoR1 Endonuclease, Mol. Biol. (Moscow), 1977, vol. 11, pp. 820-825.

    Google Scholar 

  88. Yanenko, A.S., Tsygankov, Yu.D., Minenkova, I.B., and Krylov, V.N., Isolation and General Characteristics of New Temperate Phages of Pseudomonas aeruginosa, Microbiology, 1979, vol. 48, pp. 109-113.

    Google Scholar 

  89. Khrenova, E.A., Akhverdyan, V.Z., and Krylov, V.N., Relatedness of Pseudomonas aeruginosa Bacteriophages ϕKZ and 21 Possessing a Unique Nucleoprotein Structure in the Head, Mol. Genet., Mikrobiol. Virusol., 1984, no. 5, pp. 31-34.

    Google Scholar 

  90. Arutyunyan, S.Zh., Akhverdyan, V.Z., Khrenova, E.A., et al., A Group of Genetically Related Phages of Corynebacterium glutamicum, Genetika (Moscow), 1984, vol. 20, no. 5, pp. 730-737.

    Google Scholar 

  91. Akhverdyan, V.Z., Khrenova, E.A., Reulets, M.A., et al., Characterization of Pseudomonas aeruginosa Transposable Phages of Two Groups Differing in DNA-DNA Homology, Genetika (Moscow), 1985, vol. 21, no. 5, pp. 735-747.

    Google Scholar 

  92. Arutyunyan, S.Zh., Kazhoyan, S.V., Karabekov, B.P., et al., Comparative Characterization of Brevibacterium flavum Bacteriophages, Biotechnologiya, 1986, no. 6, pp. 21-27.

    Google Scholar 

  93. Akhverdyan, V.Z., Arutyunyan, S.Zh., Oganezova, G.G., et al., General Characterization of 104 Brevibacterium flavum Bacteriophages Forming Several Subspecies in One Species, Biotechnologiya, 1990, no. 6, pp. 3-7.

    Google Scholar 

  94. Krylov, V.N., Freizon, E.V., Khrenova, E.A., et al., Bacteriophages Isolated in Corticosteroid Production, Biotechnologiya, 1991, no. 2, pp. 3-6.

  95. Mal'tseva, A.I., Akhverdyan, V.Z., Ogai, D.K., et al., Molecular-Genetic Characterization of Bacteriophage SF1 Active in Streptococcus faecium, Biotechnologiya, 1992, no. 6, pp. 37-39.

  96. Akhverdyan, V.Z., Freizon, E.V., Kopylova, Yu.I., et al., General Molecular-Genetic Characterization and Classification of Lactococcal Phages Isolated on Cheese Production, Biotechnologiya, 1992, no. 6, pp. 40-45.

  97. Mit'kina, L.N. and Krylov, V.N., Properties of Natural Interspecific Hybrids of Pseudomonas aeruginosa Transposable Phages: Specific Features of Phage PL24 Transposition, Genetika (Moscow), 2000, vol. 36, no. 10, pp. 1-9.

    Google Scholar 

  98. Ackermann, H.-W., Audurier, A., Berthiaume, L., et al., Guidelines for Bacteriophage Characterization, Adv. Virus. Res., 1978, vol. 23, pp. 1-24.

    Google Scholar 

  99. Zaborina, O., Misra, N., Kostal, J., et al., P2Z-Independent and P2Z Receptor-Mediated Macrophage Killing by Pseudomonas aeruginosa Isolated from Cystic Fibrosis Patients, Infect. Immunol., 1999, vol. 67, pp. 5231-5242.

    Google Scholar 

  100. Kamath, S., Kapatral, V., and Chakrabarty, A.M., Cellular Function of Elastase in Pseudomonas aeruginosa: Role in the Cleavage of Nucleoside Diphosphate Kinase and in Alginate Synthesis, Mol. Microbiol., 1998, vol. 30, pp. 933-941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, V.N. Phage Therapy in Terms of Bacteriophage Genetics: Hopes, Prospects, Safety, Limitations. Russian Journal of Genetics 37, 715–730 (2001). https://doi.org/10.1023/A:1016716606135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016716606135

Keywords

Navigation