Plant and Soil

, Volume 241, Issue 2, pp 155–176

Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils


DOI: 10.1023/A:1016125726789

Cite this article as:
Six, J., Conant, R.T., Paul, E.A. et al. Plant and Soil (2002) 241: 155. doi:10.1023/A:1016125726789


The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53–250 μm sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.

Download to read the full article text

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Six
    • 1
  • R. T. Conant
    • 1
  • E. A. Paul
    • 1
  • K. Paustian
    • 1
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsU.S.A.