Skip to main content
Log in

Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Mössbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Mössbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g−1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danielson, B. G., Geisser, P. and Schneider, W., Iron Therapy, Vifor (International) Inc., St. Gallen, 1996.

    Google Scholar 

  2. Schneider, W., Chimia 42 (1988), 9.

    Google Scholar 

  3. Crichton, R. R., Inorganic Biochemistry of Iron Metabolism, Ellis Horwood Limited, Chichester, 1991.

    Google Scholar 

  4. Rietveld, H., J. Appl. Cryst. 2 (1969), 65.

    Google Scholar 

  5. Young, R., The Rietveld Method, International Union of Cristallography, 1993.

  6. Williamson, G. and Hall, W., Acta Metallurgicae 1 (1953), 22.

    Google Scholar 

  7. Le Caër, G. and Dubois, J. M., J. Phys. E. Sci. Instrum. 12 (1979), 1083.

    ADS  Google Scholar 

  8. Wivel, C. and Mørup, S., J. Phys. E. Sci. Instrum. 14 (1981), 605.

    ADS  Google Scholar 

  9. Weidler, P. G., J. Porous Mat. 4 (1997), 165.

    Google Scholar 

  10. Brunauer, S., Emmett, P. H. and Teller, E., J. Am. Chem. Soc. 60 (1932), 309.

    ADS  Google Scholar 

  11. Kinniburgh, D. G., Milne, C. J. and Venema, P., Soil Sci. Soc. Am. J. 59 (1995), 417.

    Article  Google Scholar 

  12. Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations, Wiley, New York, 1976.

    Google Scholar 

  13. McKay, A. L., Mineralogical Magazine 32 (1960), 545.

    Google Scholar 

  14. Szytula, A., Burewicz, A. and Dimitrijevic, Z., Phys. Stat. Sol. A 3 (1970), 1033.

    ADS  Google Scholar 

  15. Cornell, R. M. and Schwertmann, U., The Iron Oxides, VCH Verlagsgesellschaft mbH, Weinheim, 1996.

    Google Scholar 

  16. Weidler, P. G., Oberflächen und Porositäten synthetischer Eisenoxide, PhD thesis, Dissertationsverlag NG Kopierladen GmbH, Muenchen, 1995.

    Google Scholar 

  17. Drits, V., Sakharov, B., Salyn, A. and Manceau, A., Clay Min. 28 (1993), 185.

    Google Scholar 

  18. Chambaere, D., Govaert, A., de Sitter, J. and de Grave, E., Solid State Commun. 26 (1978), 657.

    ADS  Google Scholar 

  19. Childs, C., Goodman, B., Paterson, E. and Woodhams, F., Aust. J. Chem. 33 (1980), 15.

    Article  Google Scholar 

  20. Chambaere, D. G. and de Grave, E., J. Magn. Magn. Mater. 42 (1984), 263.

    ADS  Google Scholar 

  21. Chambaere, D. G. and de Grave, E., J. Magn. Magn. Mater. 42 (1984), 349.

    ADS  Google Scholar 

  22. Mørup, S., Madsen, M. B., Franck, J., Villadsen, J. and Koch, C. J. W., J. Magn. Magn. Mater. 40 (1983), 163.

    ADS  Google Scholar 

  23. Mørup, S., In: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, G. J. Long (ed.), Plenum Press, New York, 1987, p. 89.

    Google Scholar 

  24. Quinn, T. G., Long, G. J., Benson, C. G., Mann, S. and Williams, R. J. P., Clay Clay Min. 26 (1988), 165.

    Google Scholar 

  25. Tronc, E., Il Nuovo Cimento 18 (1996), 163.

    Google Scholar 

  26. Néel, L., Ann. Geophys. 5 (1949), 99.

    Google Scholar 

  27. Kanungo, S. B., J. Colloid Interface Sci. 162 (1994), 86.

    Google Scholar 

  28. Sidhu, P. S., Gilkes, R. J., Cornell, R. M., Posner, A. M. and Quirk, J. P., Clay Clay Min. 29 (1981), 269.

    Google Scholar 

  29. Rubio, J. and Matijevic, E., J. Colloid Interface Sci. 68 (1979), 408.

    Google Scholar 

  30. Smith, R. M. and Martell, A. E., Critical Stability Constants, Vol. 6, 2nd Supplement, Plenum Press, New York, 1989.

    Google Scholar 

  31. Schwertmann, U., Z. Pflanzenern. Düng. Bodenkd. 105 (1964), 194.

    Google Scholar 

  32. Geisser, P., Baer, M. and Schaub, E., Arzneim.-Forsch./Drug Res. 42 (1992), 1439.

    Google Scholar 

  33. Zinder, B., Furrer, G. and Stumm, W., Geochim. Cosmochim. Acta 50 (1986), 1861.

    ADS  Google Scholar 

  34. Leussing, D. L. and Kolthoff, I. M., J. Am. Chem. Soc. 75 (1953), 3904.

    Google Scholar 

  35. Funk, F., Lenders, J.-P., Crichton, R. R. and Schneider, W., Eur. J. Biochem. 152 (1985), 167.

    Google Scholar 

  36. Baumgartner, E., Blesa, M. A. and Maroto, A. J. G., J. Chem. Soc. Dalton Trans. (1982), 1649.

  37. Amirbahman, A., Sigg, L. and von Gunten, U., J. Colloid Interface Sci. 194 (1997), 194.

    Google Scholar 

  38. Danielson, B. G., Salmonson, T., Derendorf, H. and Geisser, P., Arzneim.-Forsch./Drug Res. 46 (1996), 615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, F., Long, G.J., Hautot, D. et al. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure. Hyperfine Interactions 136, 73–95 (2001). https://doi.org/10.1023/A:1015552311359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015552311359

Navigation