Skip to main content
Log in

Major Unsolved Problems in Space Plasma Physics

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

There are many space plasma physics problems that are both majorand unsolved, there are other problems for which the categorization of solved or unsolved depends on one's point of view, and there are still other problems that are well understood but unsolved in the sense that quantitative predictions cannot be made although the basic physics is known. The following discussion will, of necessity, be limited and selective. The nature of the Alfvénic turbulence in the solar wind remains a major unsolved mystery: Why is the power spectrum of this anisotropic, compressible, magnetofluid often Kolmogoroff-like, with a power spectral index close to the -5/3 value characteristic of normal fluids? What is the three-dimensional symmetry of the turbulence? Are the magnetic fields quasi-two-dimensional and stochastic, or have they been highly refracted by small velocity shears? What is the origin of the -1 slope of the energy containing scales? What is the relationship between the turbulent fields and the diffusion coefficients for energetic particle transport parallel and perpendicular to the ambient magnetic field? A general problem in turbulence research is the relationship between the fluid approximation and the kinetic physics that describes the dissipation and damping of fluctuations. There is still much to learn about solar flares, coronal mass ejections and magnetospheric substorms. Another major puzzle is how to quantitatively describe the interaction of the solar wind with the interstellar medium; a problem probably not amenable to solution using fluid equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1950, Cosmical Electrodynamics. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Batchelor, G.K.: 1970, Theory of Homogeneous Turbulence. New York: Cambridge University Press.

    Google Scholar 

  • Belcher, J.W. and Davis, L.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534.

    ADS  Google Scholar 

  • Bieber, J.W., Wanner, W. and Matthaeus, W.H.: 1996, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport, J. Geophys. Res. 101(A2), 2511-2522.

    Article  ADS  Google Scholar 

  • Birn, J., Hesse, M. and Schindler, K.: 1998, Formation of thin current sheets in space plasmas, J. Geophys. Res. 103(A4), 6843-6852.

    Article  ADS  Google Scholar 

  • Biskamp, D.: 1982, Effect of secondary tearing instability on the coalescence of magnetic islands, Phys. Lett. A 87, 357.

    Article  ADS  Google Scholar 

  • Biskamp, D., Schwarz, E. and Drake, J.F.: 1995, Ion-controlled collisionless magnetic reconnection, Phys. Rev. Lett. 75(21), 3850-3853.

    Article  ADS  Google Scholar 

  • Biskamp, D., Schwarz, E. and Drake, J.F.: 1997, Two-fluid theory of collisionless magnetic reconnection, Phys. Plasmas 4(4), 1002-1009.

    Article  MathSciNet  ADS  Google Scholar 

  • Biskamp, D. and H. Welter: 1989, Dynamics of decaying two-dimensional magnetohydrodynamic turbulence, Phys. Fluids B 1, 1964.

    Article  ADS  Google Scholar 

  • Carbone, V., Malara, F. and Veltri, P.: 1995, A model for the 3-D magnetic field correlation spectra of low frequency solar wind fluctuations during Alfvénic periods, J. Geophys. Res. 100, 1763.

    Article  ADS  Google Scholar 

  • Coleman, P.J.: 1966, Hydromagnetic waves in the interplanetary medium, Phys. Rev. Lett. 17, 207.

    Article  ADS  Google Scholar 

  • Coleman, P.J.: 1968, Turbulence, viscosity, and dissipation in the solar wind plasma, Astrophys. J. 153, 371.

    Article  ADS  Google Scholar 

  • Feffer, P.T., Lin, R.P., SlassiSennou, S., McBride, S., Primbsch, J.H., Zimmer, G., Pelling, R.M., Pehl, R., Madden, N., Malone, D., Cork, C., Luke, P., Vedrenne, G. and Cotin, F.: 1997, Solar energetic ion and electron limits from HIREGS observations, Solar Physics 171(2), 419-445.

    Article  ADS  Google Scholar 

  • Galsgaard, K. and Nordlund, A.: 1997a, Heating and activity of the solar corona. 2. Kink instability in a flux tube, J. Geophys. Res. 102(A1), 219-230.

    Article  ADS  Google Scholar 

  • Galsgaard, K. and Nordlund, A.: 1997b, Heating and activity of the solar corona. 3. Dynamics of a low beta plasma with three-dimensional null points, J. Geophys. Res. 102(A1), 231-248.

    Article  ADS  Google Scholar 

  • Ghosh, S. and Goldstein, M.L.: 1997, Anisotropy in Hall MHD turbulence due to a mean magnetic field, J. Plasma Phys. 57, 129-154.

    Article  ADS  Google Scholar 

  • Ghosh, S., Siregar, E., Roberts, D.A. and Goldstein, M.L.: 1996, Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics, J. Geophys. Res. 101(A2), 2493-2504.

    Article  ADS  Google Scholar 

  • Goldstein, M.L., Roberts, D.A. and Matthaeus, W.H.: 1995, Magnetohydrodynamic turbulence in the solar wind, Ann. Rev. Astron. and Astrophys. 33, 283.

    Article  ADS  Google Scholar 

  • Golub, L., Maxson, C., Rosner, R., Serio, S. and Vaiana, G.S.: 1980, Magnetic-fields and coronal heating, Astrophys. J. 238(1), 343-348.

    Article  ADS  Google Scholar 

  • Hesse, M. and Winske, D.: 1998, Electron dissipation in collisionless magnetic reconnection, J. Geophys. Res. 103(A11), 26479-26486.

    Article  ADS  Google Scholar 

  • Hesse, M., Winske, D. and Birn, J.: 1998, On the ion-scale structure of thin current sheets in the magnetotail, Physica Scripta T74, 63-66.

    ADS  Google Scholar 

  • Heyvaerts, J. and Priest, E.R.: 1983, Coronal heating by phase-mixed shear Alfvén waves, Astron. Astrophys. 117, 220.

    MATH  ADS  Google Scholar 

  • Huba, J.D.: 1994, Hall dynamics of the Kelvin-Helmholtz instability, Phys. Rev. Lett. 72(13), 2033-2036.

    Article  ADS  Google Scholar 

  • Huba, J.D.: 1995, Hall magnetohydrodynamics in space and laboratory plasmas, Phys. Plasmas 2(6), 2504-2513.

    Article  ADS  MathSciNet  Google Scholar 

  • Huba, J.D.: 1996a, Finite Larmor radius magnetohydrodynamics of the Rayleigh-Taylor instability, Phys. Plasmas 3(7), 2523-2532.

    Article  ADS  Google Scholar 

  • Huba, J.D.: 1996b, The Kelvin-Helmholtz instability: Finite Larmor radius magnetohydrodynamics, Geophys. Res. Lett. 23(21), 2907-2910.

    Article  ADS  Google Scholar 

  • Jokipii, J.R.: 1971, Propagation of cosmic rays in the solar wind, Rev. Geophys. Space Phys. 9, 27.

    ADS  Google Scholar 

  • Kolmogorov, A.N.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30, 299.

    ADS  Google Scholar 

  • Krucker, S., Larson, D.E., Lin, R.P. and Thompson, B.J.: 1999, On the origin of impulsive electron events observed at 1 AU, Astrophys. J. 519(2), 864-875.

    Article  ADS  Google Scholar 

  • Kuperus, M., Ionson, J.A. and Spicer, D.S.: 1981, On the theory of coronal heating mechanisms, Ann. Rev. of Astron. Astrophys. 19, 7-40.

    Article  ADS  Google Scholar 

  • Lin, R.P., Hurley, K.C., Smith, D.M. and Pelling, R.M.: 1991, A search for hard X-Ray microflares near solar minimum, Solar Physics 135(1), 57-64.

    Article  ADS  Google Scholar 

  • Marsch, E., Goertz, C.K. and Richter, K.: 1982, Wave heating and acceleration of solar-wind ions by cyclotron-resonance, J. Geophys. Res. 87(A7), 5030-5044.

    ADS  Google Scholar 

  • Marsch, E. and Tu, C.-Y.: 1990, Spectral and spatial evolution of compressive turbulence in the inner solar wind, J. Geophys. Res. 95, 11,945.

    ADS  Google Scholar 

  • Marsch, E. and Tu, C.-Y.: 1997, The effects of high-frequency Alfvén waves on coronal heating and solar wind acceleration, Astron. and Astrophys. 319(3), L17-L20.

    ADS  Google Scholar 

  • Matthaeus, W.H. and Brown, M.R.: 1988, Nearly incompressible magnetohydrodynamics at low Mach number, Phys. Fluids 31, 3634.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Matthaeus, W. and Goldstein, M.: 1982, Measurement of the rugged invariants of magnetohydrodynamic turbulence, J. Geophys. Res. 87, 6011.

    ADS  Google Scholar 

  • Matthaeus, W.H., Goldstein, M.L. and Roberts, D.A.: 1990, Evidence for the presence of quasi-two-dimensional, nearly incompressible fluctuations in the solar wind, J. Geophys. Res. 95, 20,673.

    ADS  Google Scholar 

  • Matthaeus, W.H., Gray, P.C., Pontius, J.D.H. and Bieber, J.W.: 1995, Spatial structure and field-line diffusion in transverse magnetic turbulence, Phys. Rev. Lett. 75, 2136.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Klein, L.W., Ghosh, S. and Brown, M.R.: 1991, Nearly incompressible magnetohydrodynamics, pseudosound, and solar wind fluctuations, J. Geophys. Res. 96, 5421.

    ADS  Google Scholar 

  • McKenzie, J.F., Axford, W.I. and B.M.: 1997, The fast solar wind, Geophys. Res. Lett. 24(22), 2877-2880.

    Article  ADS  Google Scholar 

  • McKenzie, J.F., Banaszkiewicz, M. and Axford, W.I.: 1995, Acceleration of the high speed solar-wind, Astron. and Astrophys. 303, L45.

    ADS  Google Scholar 

  • Montgomery, D., Brown, M. and Matthaeus, W.H.: 1987, Density fluctuation spectra in magnetohydrodynamic turbulence, J. Geophys. Res. 92, 282.

    ADS  Google Scholar 

  • Nordlund, K. and Galsgaard, K.: 1997, Topologically forced reconnection, in: G. Simnett, C.E. Alissandrakis and L. Vlahos (eds.), Proc. 8th European Solar Physics Meeting, Vol. 489 of Lecture Notes in Physics. Heidelberg: Springer, pp. 179-200.

    Google Scholar 

  • Ofman, L. and Davila, J.M.: 1995, Alfvén wave heating of coronal holes and the relation to the high-speed solar wind, J. Geophys. Res. 100(A12), 23,413-23,426.

    ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields, Astrophys. J. 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1972, Topological dissipation and the small-scale fields in turbulent gases, The Astrophys. J. 174, 499.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1983a, Absence of equilibrium among close-packed twisted flux tubes, Geophys. and Astrophys. Fluid Dynamics 23(2), 85-102.

    MATH  ADS  Google Scholar 

  • Parker, E.N.: 1983b, Magnetic neutral sheets in evolving fields. 1. General-theory, Astrophys. J. 264(2), 635-641.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1983c, Magnetic neutral sheets in evolving fields. 2. Formation of the solar corona, Astrophys. J. 264(2), 642-647.

    Article  ADS  Google Scholar 

  • Passot, T. and Pouquet, A.: 1987, Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid. Mech 181, 441.

    Article  MATH  ADS  Google Scholar 

  • Passot, T. and Pouquet, A.: 1988, Hyperviscosity for compressible flows using spectral methods, J. Comp. Phys. 75, 300.

    Article  MATH  ADS  Google Scholar 

  • Reiner, M.J., Fainberg, J. and Stone, R.: 1995, Large-scale interplanetary magnetic field configuration revealed by solar radio bursts, Science 270, 461-464.

    ADS  Google Scholar 

  • Roberts, D.A.: 1989, Interplanetary observational constraints on Alfvén wave acceleration of the solar wind, J. Geophys. Res. 94, 6,899.

    ADS  Google Scholar 

  • Roberts, D.A.: 1996, The role of waves, turbulence, and structures in heating and accelerating the solar wind, invited paper, in: S. Habbal (ed.), Scientific Basis for Robotic Exploration Close to the Sun. Marlboro, MA, p. 185.

  • Roberts, D.A. and Ghosh, S.: 1999, A kinematic analysis of the role of velocity shear in expanding plasmas, J. Geophys. Res. 104(A10), 22395-22399.

    Article  ADS  Google Scholar 

  • Roberts, D.A., Goldstein, M.L., Klein, L.W. and Matthaeus, W.H.: 1987, Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons, J. Geophys. Res. 92, 12,023.

    ADS  Google Scholar 

  • Roberts, D.A., Goldstein, M.L., Matthaeus, W.H. and Ghosh, S.: 1992, Velocity shear generation of solar wind turbulence, J. Geophys. Res. 97, 17,115.

    ADS  Google Scholar 

  • Ryutova, M., Shine, R., Title, A. and Sakai, J.I.: 1997, A possible mechanism for the origin of emerging flux in the sunspot moat, Astrophys. and Space Sci. 492, 402-414.

    Google Scholar 

  • Scudder, J.D.: 1994, Ion and electron suprathermal tail strengths in the transition region: support for the velocity filtration model of the corona, Astrophys. J. 427, 446.

    Article  ADS  Google Scholar 

  • Scudder, J.D.: 1996, Electron and ion temperature gradients and suprathermal tail strengths at Parker's solar wind sonic critical point, J. Geophys. Res. 101(A5), 11,039-11,054.

    Article  ADS  Google Scholar 

  • Shay, M.A., Drake, J.F., Denton, R.E. and Biskamp, D.: 1998, Structure of the dissipation region during collisionless magnetic reconnection, J. Geophys. Res. 103(A5), 9165-9176.

    Article  ADS  Google Scholar 

  • Shay, M.A., Drake, J.F., Rogers, B.N. and Denton, R.E.: 1999, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett. 26(14), 2163-2166.

    Article  ADS  Google Scholar 

  • Siregar, E., Ghosh, S. and Goldstein, M.L.: 1995, Nonlinear entropy production operators for magnetohydrodynamic plasmas, Phys. Plasmas 2(5), 1480.

    Article  ADS  Google Scholar 

  • Siregar, E., Viñas, A.F. and Goldstein, M.L.: 1998a, Coarse graining and nonlocal processes in proton cyclotron resonant interactions, Phys. Plasmas 5, 333.

    Article  ADS  Google Scholar 

  • Siregar, E., Viñas, A.F. and Goldstein, M.L.: 1998b, Topological invariants in cyclotron turbulence, in: T. Chang and J.R. Jasperse (eds.), The 1998 Conference on Multi-Scale Phenomena in Space Plasmas II, 15. Cascais, Portugal, p. 307.

  • Smith, E.J., Balogh, A., Neugebauer, M. and McComas, D.: 1995, Ulysses observations of Alfvén waves in the southern and northern solar hemispheres, Geophys. Res. Lett. 22(23), 3381-3384.

    Article  ADS  Google Scholar 

  • Stein, R.F.: 1981, Stellar chromospheric and coronal heating by magneto-hydrodynamic waves, Astrophys. J. 246(3), 966-971.

    Article  ADS  Google Scholar 

  • Tarbell, T., Ryutova, M. and Covington, J.: 1999, Heating and jet formation by hydrodynamic cumulation in the solar atmosphere, Astrophys. J. 514(March 20), L47-L51.

    Article  ADS  Google Scholar 

  • Tsurutani, B.: 1991, Comets: A laboratory for plasma waves and instabilities, in: A.D. Johnstone (ed.), Cometary Plasma Processes, Geophys. Monogr. Ser. Washington, DC: AGU, p. 364.

    Google Scholar 

  • Tsurutani, B.T., Richardson, I.G., Thorne, R.M., Butler, W., Smith, E.J., Cowley, S.W.H., Gary, S.P., Akasofu, S.I. and Zwickl, R.D.: 1985, Observations of the right-hand resonant ion-beam instability in the distant plasma sheet boundary-layer, J. Geophys. Res. 90(A12), 2159-2172.

    Google Scholar 

  • Unti, T.W. and Neugebauer, M.: 1968, Alfvén waves in the solar wind, Phys. Fluids 11, 563.

    Article  ADS  Google Scholar 

  • Usmanov, A.V., Goldstein, M.L., Besser, B.P. and Fritzer, J.M.: 2000, A global model of the solar wind withWKB AlfvénWaves: Comparison with Ulysses data, J. Geophysical Res. 105, 12,675.

    ADS  Google Scholar 

  • van Ballegooijen, A.A.: 1985, Electric currents in the solar corona and the existence of magnetostatic equilibrium, Astrophys. J. 298(1), 421-430.

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A.: 1986, Cascade of magnetic energy as a mechanism of coronal heating, Astrophys. J. 311(2), 1001-1014.

    Article  ADS  Google Scholar 

  • Viñas, A.F., Goldstein, M.L. and Acuña, M.H.: 1984, Spectral analysis of magnetohydrodynamic fluctuations near interplanetary shocks, J. Geophys. Res. 89(A6), 3762.

    Article  ADS  Google Scholar 

  • Viñas, A.F., Wong, H.K. and Klimas, A.J.: 2000, Generation of electron suprathermal tails in the upper solar atmosphere: Implications for coronal heating, Astrophys. J. 528, 528-523.

    Article  ADS  Google Scholar 

  • Wentzel, D.G.: 1974, Coronal heating by Alfvén waves, Solar Physics 39(1), 129-140.

    Article  ADS  Google Scholar 

  • Wentzel, D.G.: 1976, Coronal heating by Alfvén waves 2, Solar Physics 50(2), 343-360.

    Article  ADS  Google Scholar 

  • Whang, Y.C. and Burlaga, L.F.: 1985, Evolution and interaction of interplanetary shocks, J. Geophys. Res. 90, 10765.

    ADS  Google Scholar 

  • Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G. and Schwadron, N.A.: 2000, Magnetic structure of the slow solar wind: Constraints from composition data, J. Geophys. Res. 105, 18,327.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, M.L. Major Unsolved Problems in Space Plasma Physics. Astrophysics and Space Science 277, 349–369 (2001). https://doi.org/10.1023/A:1012264131485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012264131485

Keywords

Navigation