Skip to main content
Log in

Biosolids and Biosolids-ash as Sources of Heavy Metals in a Plant-Soil System

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Generally, the potential for biosolids (digested or composted)to contribute heavy metals to the soil-plant system has beencompared with commercial fertilizers and other organic wastesbut not with biosolids-ash. An column study was conducted in agreenhouse to determine the availability, extractability andleachability of metals in a degraded, non-calcareous soilamended with different biosolids (200 Mg ha-1). Thebiosolids investigated were dewatered, anaerobically digestedbiosolids, composted biosolids and biosolids-ash. The columns(26 cm) were planted with wheat (Triticum aestivum L. cvMexa). The addition of digested biosolids decreased the drymatter yield of wheat. Treatments including organic biosolidsincreased Cu and Zn concentrations in wheat roots, straw andgrain, whereas the addition of biosolids-ash did not affect theconcentrations of these metals in wheat. Concentrations of Ni,Co, Pb, Cr and Cd in wheat were below reliable detection limits(0.06, 0.05, 0.1, 0.06 and 0.02 mg kg-1, respectively).After harvesting, total and AB-DTPA extractable Cu, Zn and Pbincreased in the upper layer of the soil amended with thedifferent biosolids studied, whereas levels of AB-DTPAextractable Ni and Co were affected only when the soil wasamended with digested or composted biosolids. Total chromiumincreased only in treatments including organic biosolids. TheAB-DTPA extractable Cu, Zn and Pb in the lower layer of thesoil in treatments including biosolids evidenced downwardmovement of these metals. However, absence of these metals incolumn leachates indicates that this movement was gradual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C.: 1986, Trace Elements in the Terrestrial Environment, Springer-Verlag, New York, 533 pp.

    Google Scholar 

  • Andersson, A.: 1976, Grundförbättring 27, 159.

    Google Scholar 

  • Andersson, A. and Nilson, K. O.: 1976, Swedish J. Agric. Res. 6, 151.

    Google Scholar 

  • A.O.A.C.: 1984, Official Methods of Analysis, 14th ed., Association of Official Analytical Chemists, Arlington, 1141 pp.

    Google Scholar 

  • Balogh, H.: 1996, Water, Air, and Soil Pollut. 91, 249.

    Google Scholar 

  • Bidwell, A. M. and Dowdy, R. H.: 1987, J. Environ. Qual. 16, 438.

    Google Scholar 

  • Bierman, P. M. and Rosen, C. J.: 1994a, Commun. Soil Sci. Plant. Anal. 25, 2409.

    Google Scholar 

  • Bierman, P. M. and Rosen, C. J.: 1994b, J. Environ. Qual. 23, 822.

    Google Scholar 

  • Bierman, P. M., Rosen, C. J., Bloom, P. R. and Nater, E. A.: 1995, J. Environ. Qual. 24, 279.

    Google Scholar 

  • C.I.I.: 1969, ‘Métodos de referencia para la determinación de elementos minerales en vegetales. I. N, P, K, Na, Ca y Mg’, Anal. Edaf. Agrobiol. 28, 409–430.

    Google Scholar 

  • Chaney, R. L., Hundemann, P. T., Palmer, W. T., Small, R. J., White, M. C. and Decker, A. M.: 1978, ‘Plant accumulation of heavy metals and phytotoxicity resulting from utilization of sewage sludge and sludge composts on cropland’, Proceedings of the National Conference of Composting of Municipal Residues and Sludges, Information Transfer, Inc., Rockville, Md, pp. 86–97.

    Google Scholar 

  • Chang, A. C., Warneke, J. E., Page, A. L. and Lund, L. J.: 1984, J. Environ. Qual. 13, 87.

    Google Scholar 

  • Chromec, F. W. and Magdoff, F.: 1984, J Environ. Sci. Health A 19, 697.

    Google Scholar 

  • Davis, R. D. and Beckett, P. H. T.: 1978, ‘Upper critical levels of toxic elements in plants. II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass and of nickel and zinc in young barley and ryegrass’ New Phytol. 80, 23–32.

    Google Scholar 

  • Furr, A. K., Parkinson, T. F., Elfving, D. C., Bache, C. A., Gutenman, W. H., Doss, G. J. and Lisk, D. J.: 1981, J. Agric. Food Chem. 29, 156.

    Google Scholar 

  • Garcia, C., Hernandez, T., Costa, F. and Ceccanti, C.: 1994, Waste Manag. Res. 12, 457.

    Google Scholar 

  • Gardiner, D. T., Miller, R.W., Badamchian, B., Azzari, A. S. and Sisson, D. R.: 1995, Agric. Ecosyst. Environ. 55, 1.

    Google Scholar 

  • Giordano, P. M. and Mortvedt, J. J.: 1976, J. Environ Qual. 5, 165.

    Google Scholar 

  • Guisquiani, P. L., Giglioti, G. and Businelli, D.: 1992, J. Environ. Qual. 21, 330.

    Google Scholar 

  • Gupta, U. C.: 1971, Plant and Soil 34, 249.

    Google Scholar 

  • Harris-Pierce, R. L., Redente, E. F. and Barbarick, K. A.: 1995, J. Environ. Qual. 24, 112.

    Google Scholar 

  • Jakobsen, P. and Willett, I. R.: 1986, Fertilizer Res. 9, 187.

    Google Scholar 

  • Kimber, R.W. L.: 1967, ‘Phytotoxicity from plant residues. I. The influence of rotted wheat straw on seedling growth’, Aust. J. Agric. Res. 18, 361.

    Google Scholar 

  • Kimber, R. W. L.: 1973, ‘Phytotoxicity from plant residues, II. The effect of time of rotting of straw from some grasses and legumes on the growth of wheat seedlings’, Plant and Soil 38, 347–361.

    Google Scholar 

  • Kirkham, M. B.: 1981, ‘Elemental composition of twelve plant species grown with irradiated municipal sludge’, Z. Pflanzenernähr. Bodenk. 144, 205–214.

    Google Scholar 

  • Kirkham, M. B.: 1983, Agric. Ecosyst. Environ. 9, 281.

    Google Scholar 

  • Kubota, J., Welch, R. M. and Van Campen, D. R.: 1992, Environ. Geochem. Health 14, 91.

    Google Scholar 

  • Leita, L. and De Nobili, M.: 1991, J. Environ. Qual. 20, 73.

    Google Scholar 

  • Lerch, R. N., Barbarick, K. A., Westfall, D. G., Follet, R. H., McBride, T. M. and Owen, W. F.: 1990, ‘Sustainable rates of sewage sludge for dryland winter wheat production I. Soil nitrogen and heavy metals’, J. Prod. Agric. 3, 60–65.

    Google Scholar 

  • Lester, J. N., Sterritt, R. M. and Kirk, P.W.W.: 1983, ‘Significance and behaviour of heavy metals in waste water treatment processes II. Sludge treatment and disposal’, Sci. Total Environ. 30, 45–83.

    Google Scholar 

  • Lynch, J. M.: 1985, ‘Origin, Nature and Biological Activity of Aliphatic Substances and Growth Hormones Found in Soil’, in D. Vaughan and R. E. Malcolm (eds.), Soil Organic Matter and Biological Activity, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands, pp. 151–174.

    Google Scholar 

  • M.A.P.A.: 1986, Métodos oficiales de análisis. Tomo III. Plantas, productos orgánicos fertilizantes, suelos, agua, productos fitosanitarios y fertilizantes inorgánicos, Publicaciones del Ministerio de Agricultura, Pesca y Alimentación, Madrid, 532 pp.

    Google Scholar 

  • McBride, M. B.: 1995, J. Environ. Qual. 24, 5–18.

    Google Scholar 

  • McGrath, S. P. and Cunliffe, C. H.: 1985, J. Sci. Food Agric. 36, 794.

    Google Scholar 

  • Narwal, R. P., Singh, B. R. and Panhwar, A. R.: 1983, ‘Plant availability of heavy metals in a sludgetreated soil: I. Effect of sewage sludge and soil pH on the yield and chemical composition of rape’, J. Environ. Qual. 12, 358–365.

    Google Scholar 

  • Nogales, R., Gallardo-Lara, F., Benítez, E., Soto, J., Hervas, D. and Polo, A.: 1997, Water, Air, and Soil Pollut. 94, 33.

    Google Scholar 

  • Rappaport, B. D., Martens, D. C., Reneau Jr., R. B. and Simpson, T. W.: 1987, J. Environ. Qual. 16, 29.

    Google Scholar 

  • Reddy, M. R., Lameck, D. and Rezania, M. E.: 1989, ‘Uptake and distribution of copper and zinc by soybean and corn from soil treated with sewage sludge’, Plant and Soil 113, 271–274.

    Google Scholar 

  • Richards, B. K., Peverly, J. H., Steenhuis, T. S. and Liebowitz, B. N.: 1997 J. Environ. Qual. 26, 782–788.

    Google Scholar 

  • Sheaffer, C. C., Decker, A. M., Chaney, R. L. and Douglass, L. W.: 1979, J. Environ. Qual. 8, 455.

    Google Scholar 

  • Soil Survey Staff: 1983, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, USDA Forest Service Staff, John Wiley & Sons Inc., 768 pp.

  • Soltanpour, P. N. and Schwab, A. P.: 1977, Commun. Soil Sci. Plant Anal. 8, 195.

    Google Scholar 

  • Sposito, G., Lund, L. J. and Chang, A. C.: 1982, ‘Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases’, Soil Sci. Soc. Am. J. 46, 260–264.

    Google Scholar 

  • Takkar, P. N and Mann, M. S.: 1978, ‘Toxic levels of soil and plant zinc for maize and wheat’, Plant and Soil 49, 667–669.

    Google Scholar 

  • Unger, M. and Fuller, W. H.: 1985, ‘Optimum utilization of sewage sludge of low and high metal content for grain production on arid lands’, Plant and Soil 88, 321–332.

    Google Scholar 

  • Welch, J. E. and Lund, L. J.: 1987, J. Environ. Qual. 16, 403.

    Google Scholar 

  • Wild, R. S. and Jones, K. C.: 1994, ‘The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the U.K.’, Waste Manage. and Res. 12, 49–59.

    Google Scholar 

  • Wilkins, E. S. and Wilkins, M. G.: 1983, ‘Review of pyrolysis and combustion products of municipal and industrial wastes’, J. Environ. Sci. Health, A 18, 747–772.

    Google Scholar 

  • Wong, M. H.: 1985, ‘Heavy metal contamination of soils and crops from auto traffic, sewage sludge, pig manure and chemical fertilizer’, Agric. Ecosyst. Environ. 13, 139–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nogales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benítez, E., Romero, E., Gómez, M. et al. Biosolids and Biosolids-ash as Sources of Heavy Metals in a Plant-Soil System. Water, Air, & Soil Pollution 132, 75–87 (2001). https://doi.org/10.1023/A:1012012924151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012012924151

Navigation