Skip to main content
Log in

Three-dimensional Schwoebel–Ehrlich barrier

  • Published:
Journal of Computer-Aided Materials Design

Abstract

It is well known that the Schwoebel–Ehrlich barrier affects, and even dictates, surface microstructure evolution – such as the transition of growth modes from layer-by-layer to island growth. The conventional Schwoebel–Ehrlich barrier refers to the case when an adatom diffuses down an island of one monolayer. During thin film deposition, an adatom often needs to diffuse down an island of multiple layers. For the latter, we demonstrate and calculate the corresponding Schwoebel–Ehrlich barrier – which we call three-dimensional Schwoebel–Ehrlich barrier. Our calculations show that the three-dimensional Schwoebel–Ehrlich barrier can be large even if its conventional counterpart is small – as in aluminum. We further propose and demonstrate a possible process of engineering surface faceting and film texture, by modifying the three-dimensional Schwoebel–Ehrlich barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaidya, S. and Sinha, A.K., Thin Solid Film, 75 (1981) 523.

    Article  Google Scholar 

  2. Greene, J., Sundgren, J., Hultman, L., Petrov, L., and Bergstrom, D., Appl. Phys. Lett., 67 (1995) 2928.

    Article  CAS  Google Scholar 

  3. Onoda, H., Kageyama, M., and Hashimoto, K., J. Appl. Phys., 77 (1995) 885.

    Article  CAS  Google Scholar 

  4. Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys., 37 (1966) 3682.

    Article  CAS  Google Scholar 

  5. Ehrlich, G. and Hudda, F.G., J. Chem. Phys., 44 (1966) 1039.

    Article  CAS  Google Scholar 

  6. Ehrlich, G., Surf. Sci., 299/300 (1994) 628.

    Article  Google Scholar 

  7. Gölzhäuser, A. and Ehrlich, G., Phys. Rev. Lett., 77 (1996) 1334.

    Article  Google Scholar 

  8. Wang, S.C. and Ehrlich, G., Phys. Rev. Lett., 79 (1997) 4234.

    Article  CAS  Google Scholar 

  9. Kyuno, K. and Ehrlich, G., Phys. Rev. Lett., 84 (2000) 2658.

    Article  CAS  Google Scholar 

  10. Zhang, Z. and Lagally, M.G., Phys. Rev. Lett., 72 (1994) 693.

    Article  CAS  Google Scholar 

  11. Zhang, Z. and Lagally, M.G., Science, 276 (1997) 377.

    Article  CAS  Google Scholar 

  12. Kandel, D., Phys. Rev. Lett., 78 (1997) 499.

    Article  CAS  Google Scholar 

  13. Kandel, D. and Kaxiras, E., Phys. Rev. Lett., 75 (1995) 2742.

    Article  CAS  Google Scholar 

  14. Esch, S., Hohage, M., Michely, T., and Comsa, G., Phys. Rev. Lett., 72 (1994) 518.

    Article  CAS  Google Scholar 

  15. van der Vegt, H.A., Breeman, M., Ferrer, S., Etgens, V.H., Torrelles, X., Fajardo, P., and Vlieg, E., Phys. Rev., B51 (1995) 14806.

    Google Scholar 

  16. Jacobsen, J., Jacobsen, K.W., Stoltze, P., and Nø rskov, K., Phys. Rev. Lett., 74 (1995) 2295.

    Article  CAS  Google Scholar 

  17. Kodiyalam, S., Khor, K.E., and Sarma, S.D., Phys. Rev., B53 (1996) 9913.

    Google Scholar 

  18. Feibelman, P.J., Phys. Rev. Lett., 81 (1998) 168.

    Article  CAS  Google Scholar 

  19. Kurpick, U. and Rahman, T.S., Phys. Rev., B57 (1998) 2482.

    Google Scholar 

  20. Ramana Murty, M.V. and Cooper, B.H., Phys. Rev. Lett., 83 (1999) 352.

    Article  Google Scholar 

  21. Rottler, J. and Maass, P., Phys. Rev. Lett., 83 (1999) 3490.

    Article  CAS  Google Scholar 

  22. Schinzer, S., Koehler, S., and Reents, G., Euro. Phys. J., B15 (2000) 161.

    Google Scholar 

  23. Stumpf, R. and Scheffler, M., Phys. Rev. Lett., 72 (1994) 254.

    Article  CAS  Google Scholar 

  24. Stumpf, R. and Scheffler, M., Phys. Rev., B53 (1996) 4958.

    Google Scholar 

  25. Bogicevic, A., Stroemquist, J., and Lundqvist, B.I., Phys. Rev. Lett., 81 (1998) 637.

    Article  CAS  Google Scholar 

  26. Bockstedte, M., Liu, S.J., Pankratov, O., Woo, C.H., and Huang, H., Comp. Mater. Sci. (2001) in press.

  27. Baumann, F.H., Chopp, D.L., Diaz de la Rubia, T., Gilmer, T.H., Greene, J.E., Huang, H., Kodambaka, S., O'Sullivan, P., and Petrov, I., MRS Bulletin, 26 (2001) 182.

    CAS  Google Scholar 

  28. Huang, H., Gilmer, G.J., and Diaz de la Rubia, T., J. Appl. Phys., 84 (1998) 3636.

    Article  CAS  Google Scholar 

  29. Huang, H. and Gilmer, G.H., J. Comp. Aid. Mat. Des., 6 (1999) 117.

    Article  CAS  Google Scholar 

  30. Gilmer, G.H., Huang, H., Diaz de la Rubia, T., and Roland, C., Comp. Mater. Sci., 12 (1998) 354.

    Article  CAS  Google Scholar 

  31. Gilmer, G.H., Huang, H., Diaz de la Rubia, T., Torre, J.D., and Barumann, F., Thin Solid Films, 365 (1999) 189.

    Article  Google Scholar 

  32. Huang, H. and Gilmer, G.H., Comp. Mater. Sci. (2001) in press.

  33. Huang, H. and Gilmer, G.H., J. Comp. Aid. Mat. Des. 7 (2001) 203.

    Article  Google Scholar 

  34. Voter, A.F., Phys. Rev., B34 (1986) 6819.

    Google Scholar 

  35. Liu, S.J., Wang, E.G., Woo, C.H., and Huang, H., Adv. Plasma Sci., 3 (2001) 125.

    CAS  Google Scholar 

  36. Hsiung, L., private communication.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wang, E., Woo, C. et al. Three-dimensional Schwoebel–Ehrlich barrier. Journal of Computer-Aided Materials Design 7, 195–201 (2000). https://doi.org/10.1023/A:1011832828818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011832828818

Navigation