Skip to main content
Log in

Biogeography of prostrate-leaved geophytes in semi-arid South Africa: hypotheses on functionality

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Nowhere is the species diversity of geophytes greater than in the five mediterranean-climate ecosystems of the world. Of these, the Cape mediterranean zone of South Africa is the most speciose. While the relative diversity and importance of geophytes of all of the other four mediterranean regions of the world drops off sharply as one moves into adjacent winter-rainfall desert regions, geophytes in the semi-arid to arid Succulent Karoo (including Namaqualand) remain a very important component of the flora, both in terms of abundance and diversity (comprising 13 to 29% of the regional floras in this region). Apart from species richness, there are also a number of interesting geophyte growth forms in this region. One unusual growth form is geophytes with flattened leaves that lie prostrate on the soil surface. At least eight families (Amaryllidaceae, Colchicaceae, Eriospermaceae, Geraniaceae, Hyacinthaceae, Iridaceae, Orchidaceae and Oxalidaceae) exhibit this growth form. While this growth form is relatively common in many geophyte lineages in the Succulent Karoo biome and the Cape mediterranean zone (Fynbos biome), and occurs infrequently through the summer-rainfall temperate regions of Africa, it is virtually absent in other regions worldwide. A null hypothesis is that the prostrate leaved trait is a neutral characteristic, however biogeographical data do not support this. A neutral trait would be unlikely to show such a clear pattern of distribution. Several alternative hypotheses on the adaptive significance of this growth form are discussed. These include: avoidance of herbivory, reduction in competition from neighbors, creation of a CO2 enriched environment below the leaves, reduction of water loss around the roots, reduction of water loss through transpiration, precipitation of dew on the leaves and maintenance of optimal leaf temperatures for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, R. S. & Salter, T. M. 1950. Flora of the Cape Peninsula. Juta & Co. Ltd., Cape Town.

    Google Scholar 

  • Arnold, T. H. & De Wet, B. C. 1993. Plants of Southern Africa: names and distribution. Mem. Bot. Surv. S. Afr. 62.

  • Bond, P. & Goldblatt, P. 1984. Plants of the Cape Flora-A descriptive catalogue. J. S. Afr. Bot., supplementary volume no. 13.

  • Boucher, C. 1977. A provisional check list of flowering plants and ferns in the Cape Hangklip area. J. S. Afr. Bot. 43: 57-80.

    Google Scholar 

  • Dafni, A., Cohen, D. & Noy-Meir, I. 1981. Life cycle variation in geophytes. Ann. Mo. Bot. Gard. 68: 652-660.

    Google Scholar 

  • di Castri, F. & Hajek, E. 1976. Bioclimatología de Chile. Vicerrectoria Académica, Univ. Católica de Chile, Santiago.

    Google Scholar 

  • Desmet, P. G. 1997. The vegetation and restoration potential of the coastal belt between Port Nolloth and Alexander Bay, Namaqualand, South Africa. Msc Thesis, Department of Botany, University of Cape Town.

  • Doutt, R. L. 1994. Cape Bulbs. B. T. Batsford Ltd., London.

    Google Scholar 

  • Duncan, G. 1988. The Lachenalia handbook. Ann. Kirst. Bot. Gard. 17.

  • Du Plessis, N. M. & Duncan, G. D. 1989. Bulbous Plants of southern Africa. Tafelberg Publishers, Cape Town.

    Google Scholar 

  • Eller, B. M. & Grobbelaar, N. 1982. Geophylly: consequences for Ledebouria ovatifolia in its natural habitat. J. Exp. Bot. 33: 366-375.

    Google Scholar 

  • Esler, K. J. & Rundel, P. W. 1999. Comparative patterns of phenology and growth form diversity in two winter rainfall deserts: the succulent Karoo and the Mojave desert ecosystems. Plant Ecol. 142: 97-104 (this issue).

    Google Scholar 

  • Esler, K. J., Rundel, P. W. & Cowling, R. M. 1999. The succulent karoo in a global context: plant structural and functional comparisons with North American winter rainfall deserts. In: Milton, S. and Dean, W. R. J. (eds). The Karoo: ecological patterns and processes. Cambridge University Press (in press).

  • Galil, J. 1980. Kinetics of bulbous plants. Endeavour, New Series 5: 15-20.

  • Goldblatt, P. 1978. An analysis of the flora of southern Africa: its characteristics, relationships and origins. Ann. Mo. Bot. Gard. 65: 369-436.

    Google Scholar 

  • Goldblatt, P. 1986. The moreas of southern Africa. Ann. Kirst. Bot. Gard. 14.

  • Hajek, E. & di Castri, F. 1975. Bioclimatografía de Chile. Publ. 45. Inst. Geogr., Univ., Católica de Chile, Santiago.

    Google Scholar 

  • Hilton-Taylor, C. 1996. Patterns and characteristics of the flora of the succulent Karoo biome, southern Africa. Pp. 58-72. In: van der Maesen, L. J. G. et al. (eds), The Biodiversity of African Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hickman, J. (ed). 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley.

    Google Scholar 

  • Jeppe, B. 1989. Spring and winter flowering bulbs of the Cape. Oxford University Press, Cape Town.

    Google Scholar 

  • Le Roux, A. & Schelpe, T. 1988. Namaqualand. South African Wildflower Guide 1. Botanical Society of South Africa, Cape Town.

    Google Scholar 

  • Lock, J. M. In press. Down to earth: broad-leaved rosette plants. 1997 AETFAT proceedings.

  • Lovegrove, B. 1993. The living deserts of southern Africa. Fernwood Press, Vlaeberg.

    Google Scholar 

  • MacMahon, J. A. & Wagner, F. H. 1985. The Mojave, Sonoran and Chihuahuan deserts of North America. pp. 105-202. In: Evenari, M., Noy-Meir, I. & Goddall, D. W. (eds.), Hot Deserts and Arid Shrublands, A. Ecosystems of the World 12A. Elsevier, Amsterdam.

    Google Scholar 

  • Marchant, N. G., Wheeler, J. R., Rye, B. L., Bennett, E. M., Lander, N. S. & MacFarlane, T. D. 1987. Flora of the Perth region. Western Australian Herbarium, Perth.

    Google Scholar 

  • Marticorena, C. 1990. Contribución a la estadística de la flora de Chile. Gayana 47: 85-113.

    Google Scholar 

  • Mulroy, T. W. & Rundel, P. W. 1977. Annual plants: adaptations to desert environments. Bioscience 27: 109-114.

    Google Scholar 

  • Owen-Smith, N. & Danckwerts, J. E. 1997. Herbivory. pp. 397-420. In: Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds.), Vegetation of Southern Africa. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pate, J. & Dixon, K. 1982. Tuberous, cormous and bulbous plants. University of Western Australia Press, Nedlands.

    Google Scholar 

  • Perry, P. L., Bayer, M. B. & Wilbraham, L. A. 1979. Flora of the Karoo Botanic Garden. 2. Geophytes. Veld and Flora 65: 79-81.

    Google Scholar 

  • Rigual, A. 1984. Flora y vegetación de la província de Alicante. Instituto de Estudios Juan Gil-Albert, Alicante.

    Google Scholar 

  • Rossa, B. & vonWillert, D. J. 1999. Physiological characteristics of geophytes in semi-arid Namaqualand, South Africa. Plant Ecol. 142: 121-132 (this issue).

    Google Scholar 

  • Ruiters, C. 1995. Biomass and resource allocation patterns within the bulb of the perennial geophyte Haemanthus pubescens L. subsp. pubescens (Amaryllidaceae) in a periodic arid environment of lowland fynbos, South Africa. J. Arid Environ. 31: 311-323.

    Google Scholar 

  • Ruiters, C., McKenzie, B., Aalbers, J. & Raitt, L. M. 1993a. Seasonal allocation of biomass and resources in the geophytic species Haemanthus pubescens subspecies pubescens in lowland coastal fynbos, South Africa. S. Afr. J. Bot. 59: 251-258.

    Google Scholar 

  • Ruiters, C., McKenzie, B. & Raitt, L. M. 1993b. Life-history studies of the perennial geophyte Haemanthus pubescens L. subspecies pubescens in lowland coastal fynbos, South Africa. Int. J. Plant Sci. 154: 441-449

    Google Scholar 

  • Rundel, P. W. 1996. Monocotyledenous geophytes in the California flora. Madroño 43: 354-368.

    Google Scholar 

  • Rundel, P. W., Cowling, R. M., Esler, K. J., Mustart, P. M., van Jaarsveld, E. & Bezuidenhout, H. 1995. Winter growth phenology and leaf orientation in Pachypodium namaquanum (Apocynaceae) in the succulent karoo of the Richtersveld, South Africa. Oecologia 101: 472-477.

    Google Scholar 

  • Shearing, D. & Van Heerden, K. 1994. Karoo. South African Wild Flower Guide 6. Botanical Society of South Africa, Cape Town.

    Google Scholar 

  • Snijman, D. A. 1984. A revision of the genus Haemanthus L. (Amaryllidaceae). J. S. Afr. Bot., supplementary volume 12: 1-139.

    Google Scholar 

  • Snijman, D. A. & Perry, P. 1987. A floristic analysis of the Nieuwoudtville Wild Flower Reserve, north-western Cape. S. Afr. J. Bot. 53: 445-454.

    Google Scholar 

  • van Rooyen, M. W., Theron, G. K. & Grobbelaar, N. 1990. Life form and dispersal spectra of the flora of Namaqualand. J. Arid Environ. 19: 133-145.

    Google Scholar 

  • Vorster, P. & Spreeth, A. D. 1996. Leaf anatomy and generic delimitation in South African Amaryllidaceae. Pp. 513-516. In: van der Maesen, L. J. G. et al. (eds), The Biodiversity of African Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Watt, J. M. & Breyer-Brandwijk, M. G. 1962. The medicinal and poisonous plants of southern and eastern Africa. Second edition. Livingstone, Edinburgh.

    Google Scholar 

  • Weather Bureau. 1986. Climate of South Africa: Climate statistics up to 1984. Report No. WB40. Government Printer, Pretoria.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esler, K.J., Rundel, P.W. & Vorster, P. Biogeography of prostrate-leaved geophytes in semi-arid South Africa: hypotheses on functionality. Plant Ecology 142, 105–120 (1999). https://doi.org/10.1023/A:1009822311708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009822311708

Navigation