Skip to main content
Log in

Hydrazine method of synthesis of γ-Fe2O3 useful in ferrites preparation. Part III – study of hydrogen iron oxide phase in γ-Fe2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Direct current electrical conductivity (σ) measurements as a function of temperature have been carried out on γ-Fe2O3 prepared from precursors, iron (II) carboxylatohydrazinates, γ-FeOOH and hydrazinated γ-FeOOH. The conductivity variation obeys an Arrhenius equation, ςI = \ςoe E / kT and the plots of log σ versus 1/T of the as prepared γ-Fe2O3, which are in general linear, during the very first heating up to 350°C and cooling to room temperature (RT) do not overlap. This indicates a hysteresis behavior of conductivity, thereby suggesting involvement of two different conductivity mechanisms. When the heat treated sample was equilibrated in a known partial pressure of moisture at ∼200°C and then conductivity measured from RT, the log plots during heating and cooling did not overlap and a hysteresis behavior similar to the as prepared γ-Fe2O3 is observed again in the conductivity. Water is considered to be crucial during the synthesis of γ-Fe2O3 through magnetite, Fe3O4. Protons, H+, are thought to be introduced in the spinel Fe3O4 making it defective and the oxidation product of this is γ-Fe2O3 which retains few protons in its spinel structure. From the structural similarity of such proton incorporated γ-Fe2O3 and lithium ferrite, LiFe5O8, (Fe3+)8 [Fe3+ 12 Li1+ 4]O32, a formula HFe5O8, (Fe3+)8 [Fe3+12H1+4]O32 is suggested. A hydrogen iron oxide of formula H1-xFe5+x3O8, where x ∼ 0.1 is probably formed as a maximum limit. Protons are removed during the very first heating of the as prepared sample in the present studies and hence the conductivity of proton free γ-Fe2O3 is different and therefore a hysteresis behavior is observed. Moisture equilibration reintroduces the protons. The lithiated samples in the present studies were found to substitute for protons in γ-Fe2O3 and no hysteresis behavior is observed in such samples even after moisture equilibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Giovanoli and R. Brutsh, Thermochim. Acta 13 (1975) 15.

    Google Scholar 

  2. M. P. Morales, C. Pecharronman, T. Gonzalezcarreno and C. J. Serna, J. Solid State Chem. 108(1994) 158.

    Google Scholar 

  3. P. B. Braun, Nature 170 (1952) 1123.

    Google Scholar 

  4. I. David and A. J. E. Welch, Trans. Faraday Soc. 52 (1956) 1642.

    Google Scholar 

  5. G. M. Van oosterhout and C. J. M. Rooijmans, Nature 181 (1958) 44.

    Google Scholar 

  6. C. Greaves, J. Solid State Chem. 49 (1983) 325.

    Google Scholar 

  7. M. Pernet, J. Rodrigues, M. Gondrand, J. Fontcuberta, P. Strobel and J. C. Joubert, in “Advances in Ferrites”, Vol.I, edited by C. M. Srivastava and M. J. Patni (Oxford and IBM Publishing, New Delhi, 1989) p. 61.

    Google Scholar 

  8. M. Pernet, P. Strobel, B. Bonnet and P. Bordet, Solid State Ion. 66 (1993) 259.

    Google Scholar 

  9. V. K. Sankaranarayanan, Q. A. Pankhurst, D. P. E. Dickson and C. E. Johnson, J. Magn Magn Mater. 130 (1994) 288.

    Google Scholar 

  10. M. S. Islam and C. R. A. Catlow, J. Solid State Chem. 77 (1988) 180.

    Google Scholar 

  11. T. Elder, J. Appl. Phys. 36 (1965) 1012.

    Google Scholar 

  12. A. Aharoni, E. H. Frei and M. Schieber, J. Phys. Chem. Solids 23 (1962) 545.

    Google Scholar 

  13. F. Gazzarini and G. Lanzavecchia, in “Reactivity of Solids”, edited by J.W. Mitchell et al. (Wiley-Interscience, 1969) p. 57.

  14. G. D. Renshawand C. Roscoe, Nature 224 (1969) 263.

    Google Scholar 

  15. V. Rao, A. L. Shashimohan and A. B. Biswas, J. Mater. Sci. 9 (1974) 430.

    Google Scholar 

  16. K. S. Rane, A. K. Nikumbh and A. J. Mukhedkar, ibid. 16 (1981) 2387.

    Google Scholar 

  17. M. R. Anantharaman, K. Seshan, D. K. Chakrabarthy and H. V. Keer, Bull. Mater. Sci. 3 (1981) 275.

    Google Scholar 

  18. F. E. Deboek and P. W. Selwood, J. Am. Chem. Soc. 76(1954) 3365.

    Google Scholar 

  19. A. K. Nikumbh, K. S. Rane and A. J. Mukhedkar, J. Mater Sci. 17 (1982) 2503.

    Google Scholar 

  20. A. Venkataraman, V. A. Mukhedkar, M. M. Rahman, A. K. Nikumbh and A. J. Mukhedkar, Thermochim. Acta 115 (1987) 215.

    Google Scholar 

  21. A. Venkataraman, V. A. Mukhedkar, M. M. Rahman, A. K. Nikumbh and A. J. Mukhedkar, ibid. 112 (1987) 231.

    Google Scholar 

  22. M. M. Rahman, V. A. Mukhedkar, A. Venkataraman, A. K. Nikumbh, S. B. Kulkarni and A. J. Mukhedkar, ibid. 125 (1988) 173.

    Google Scholar 

  23. A. Venkataraman, V. A. Mukhedkar and A. J. Mukhedkar, J. Therm. Anal. 35 (1989) 2115.

    Google Scholar 

  24. A. Venkataraman and A. J. Mukhedkar, ibid. 36 (1990) 1495.

    Google Scholar 

  25. A. K. Nikumbh, A. A. Latkar and M. M. Phadke, Thermochim. Acta 219 (1993) 269.

    Google Scholar 

  26. V. Moye, K. S. Rane and V. N. Kamat dalal, J. Mater. Sci. Mater. Electron 4 (1993) 241.

    Google Scholar 

  27. K. S. Rane and V. M. S. Verenkar, J. Mater. Chem.(submitted).

  28. K. S. Rane and V. M. S. Verenkar, ibid. (submitted).

  29. JCPDS, Powdered Diffraction File, Int. Centre for Diffraction Data, Swarthmore, PA, no. 251402 (1975).

  30. JCPDS, Powdered diffraction file no. 24–81 (1974).

  31. S. D. Likhite, C. Radhakri shnamurthy and P. W. Sahasrabudhe, Rev. Sci. Instrum 36 (1965) 1558.

    Google Scholar 

  32. D. Khalafalla and A. H. Morri sh, J. Appl. Phys. 43 (1972) 624.

    Google Scholar 

  33. M. M. Thackeray, W. I. F. David and J. B. Goodenough, Mater. Res. Bull. 17 (1982) 785.

    Google Scholar 

  34. M. S. Islam and C. R. A. Catlow, J. Solid State Chem. 77 (1988) 180.

    Google Scholar 

  35. H. Watanabe and J. Seto, Bull. Chem. Soc. Jpn. 64 (1991) 2411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rane, K.S., Verenkar, V.M.S., Pednekar, R.M. et al. Hydrazine method of synthesis of γ-Fe2O3 useful in ferrites preparation. Part III – study of hydrogen iron oxide phase in γ-Fe2O3 . Journal of Materials Science: Materials in Electronics 10, 121–132 (1999). https://doi.org/10.1023/A:1008928502588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008928502588

Keywords

Navigation