Skip to main content
Log in

Biphasic Effects of Selegiline on Striatal Dopamine: Lack of Effect on Methamphetamine-Induced Dopamine Depletion

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We tested the hypothesis that selegiline can attenuate dopamine depletion if administered following high doses of methamphetamine that cause neurotoxicity in the striatum. Methamphetamine produced decreases of 50% or greater in both striatal concentrations of dopamine and combined concentrations of homovanillic acid and DOPAC in mice. For animals not exposed to methamphetamine, chronic treatment with selegiline over 18 days caused biphasic effects on striatal dopamine content, with decreases, no effect, or increases observed for mice receiving treatment with 0.02, 0.2, and 2.0 mg/kg, respectively. Selegiline failed to modify methamphetamine-induced reductions in striatal dopamine content or combined concentrations of homovanillic acid and DOPAC. Significant increases in mortality following the onset of selegiline treatment (24 hours after the initial dose of methamphetamine) occurred in methamphetamine-treated mice that received saline or 2.0 mg/kg of selegiline, but not for mice treated with 0.02 or 0.2 mg/kg of selegiline. These results indicate that selegiline fails to attenuate dopamine depletion when administered chronically following exposure to methamphetamine, but may attenuate methamphetamine-induced mortality. In control animals that did not receive methamphetamine, low doses of selegiline produced decreases the concentration of striatal dopamine, while high dose treatment caused increases in striatal dopamine content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Derlet, R. W. and Heischober, B. 1990. Methamphetamine. Stimulant of the 1990s?. [Review] [46 refs]. West. J. Med. 153:625–628.

    PubMed  Google Scholar 

  2. Seiden, L. S. and Sabol, K. E. 1994. Neurotoxicity of methamphetamine-related drugs and cocaine. Pages 825–843, in Chang, L. W. and Dyer, R. S. (eds.), Handbook of Neurotoxicology Marcel Dekker, Inc., New York.

    Google Scholar 

  3. Cadet, J. L. and Brannock, C. 1998. Free radicals and the pathobiology of brain dopamine systems. [Review] [131 refs]. Neurochem. Int. 32:117–131.

    PubMed  Google Scholar 

  4. Woolverton, W. L., Ricaurte, G. A., Forno, L. S., and Seiden, L. S. 1989. Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res. 486:73–78.

    PubMed  Google Scholar 

  5. Villemangen, V., Yuan, J., Wong, D. F., Dannals, R. F., Hatzidimitriou, G., Mathews, W. B., Ravert, H. T., McCann, U. D., and Ricaurte, G. A. 1998. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence fro [11C]WIN-35,428 positron emission tomagraphy studies and direct in vitro determinations. J. Neurochem. 18:419–427.

    Google Scholar 

  6. Wilson, J. M., Kalasinsky, K. S., Levey, A. I., et al. 1996. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Med. 2:699–703.

    PubMed  Google Scholar 

  7. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., and Ricaurte, G. A. 1998. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J. Neuroscience 18:8417–8422.

    Google Scholar 

  8. Wallace, T. L., Gudelsky, G. A., and Vorhees, C. V. 1999. Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. J. Neuroscience 19:9141–9148.

    Google Scholar 

  9. Friedman, S. D., Castaneda, E., and Hodge, G. K. 1998. Long-term monoamine depletion, differential recovery, and subtle behavioral impairment following methamphetamine-induced neurotoxicity. Pharmacology, Bioch. & Behav. 61:35–44.

    Google Scholar 

  10. Melega, W. P., Raleigh, M. J., Stout, D. B., Lacan, G., Huang, S. C., and Phelps, M. E. 1997. Recovery of striatal dopamine function after acute amphetamine-and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res. 766:113–120.

    PubMed  Google Scholar 

  11. Melega, W. P., Raleigh, M. J., Stout, D. B., Huang, S. C., and Phelps, M. E. 1997. Ethological and 6-[18F]fluoro-L-DOPAPET profiles of long-term vulnerability to chronic amphetamine. Behav. Brain Res. 84:259–268.

    PubMed  Google Scholar 

  12. Cass, W. A. and Manning, M. W. 1999. Recovery of presynaptic dopaminergic functioning in rats treated with neurotoxic doses of methamphetamine. J. Neuroscience 19:7653–7660.

    Google Scholar 

  13. Bowyer, J. F., Frame, L. T., Clausing, P., Nagamoto-Combs, K., Osterhout, C. A., Sterling, C. R., and Tank, A. W., 1998. Longterm effects of amphetamine neurotoxicity on tyrosine hydroxylase mRNA and protein in aged rats. J. Pharmacol. & Exper. Therap. 286:1074–1085.

    Google Scholar 

  14. Heinonen, E. H. and Lammintausta, R. 1991. A review of the pharmacology of selegiline. Acta Neurol. Scand. 84:44–59.

    Google Scholar 

  15. Knoll, J. 1996. (-)Deprenyl (selegiline) in Parkinson's disease: a pharmacologist's comment. Biomed. Pharmacotherap. 50:315–317.

    Google Scholar 

  16. Knoll, J. and Miklya, I. 1994. Multiple, small dose administration of (-)deprenyl enhances catecholaminergic activity and diminishes serotoninergic activity in the brain and these effects are unrelated to MAO-B inhibition. Arch. Int. Pharmacodynam. Therap. 328:1–15.

    Google Scholar 

  17. Lamensdorf, I., Youdim, M. B., and Finberg, J. P. 1996. Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J. Neurochem. 67:1532–1539.

    PubMed  Google Scholar 

  18. Wagner, G. C. and Walsh, S. L. 1991. Evaluation of the effects of inhibition of monoamine oxidase and senescence on methamphetamine-induced neuronal damage. Int. J. Develop. Neurosci. 9:171–174.

    Google Scholar 

  19. Johnson, S. K., Medina, D., and Wagner, G. C. 1992. The effects of deprenyl on methamphetamine-induced dopamine depletions. J. Neural Trans.—Gen. Sec. 89:123–127.

    Google Scholar 

  20. Tatton, W. G. and Greenwood, C. E. 1991. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J. Neurosci. Res. 30:666–672.

    PubMed  Google Scholar 

  21. Hao, R., Ebadi, M., and Pfeiffer, R. F. 1995. Selegiline protects dopaminergic neurons in culture from toxic factor(s) present in the cerebrospinal fluid of patients with Parkinson's disease. Neurosci. Lett. 200:77–80.

    PubMed  Google Scholar 

  22. Paterson, I. A., Barber, A. J., Gelowitz, D. L., and Voll, C. 1997. (-)Deprenyl reduces delayed neuronal death of hippocampal pyramidal cells. Neurosci. Biobehav. Rev. 21:181–186.

    PubMed  Google Scholar 

  23. Lahtinen, H., Koistinaho, J., Kauppinen, R., Haapalinna, A., Keinanen, R., and Sivenius, J. 1997. Selegiline treatment after transient global ischemia in gerbils enhances the survival of CA1 pyramidal cells in the hippocampus. Brain Res. 757:260–267.

    PubMed  Google Scholar 

  24. Ansari, K. S., Yu, P. M., Kruck, T. P., and Tatton, W. G. 1993. Rescue of axotomized immature rat facial motoneurons by R(-)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J. Neuroscience 13:4042–4053.

    Google Scholar 

  25. Grasing, K. and Ghosh, S. 1998. Selegiline prevents long-term changes in dopamine efflux and stress immobility during the second and third weeks of abinence following opiate withdrawal. Neuropharmacology 37:1007–1017.

    PubMed  Google Scholar 

  26. Kreek, M. J. 1997. Opiates and cocaine addictions: challenge for pharmacotherapies. Pharmacol. Biochem. Behav. 57:551–569.

    PubMed  Google Scholar 

  27. Dackis, C. A. and Gold, M. S. 1985. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Biobehav. Rev. 9:469–477.

    PubMed  Google Scholar 

  28. De Vito, M. J. and Wagner, G. C. 1989. Methamphetamineinduced neuronal damage: A possible role for free radicals. Neuropharmacology 28:1145–1150.

    PubMed  Google Scholar 

  29. Cass, W. A. 1996. GDNF selectively protects dopamine neurons over serotonin neurons against the neurotoxic effects of methamphetamine. J. Neuroscience 16:8132–8139.

    Google Scholar 

  30. Ohmori, T., Abekawa, T., and Koyama, T. 1996. The role of glutamate in behavioral and neurotoxic effects of methamphetamine. Neurochem. Int. 29:301–307.

    PubMed  Google Scholar 

  31. Cunfeng, P. and Vorhees, C. V. 1995. Protective effects of MK-801 on methamphetamine-induced depletion of dopaminergic and serotonergic terminals and striatal astrocytic response: an immunocytochemical study. Synapse 19:97–104.

    PubMed  Google Scholar 

  32. Bowyer, J. F., Davies, D. L., Schmued, L., Broening, H. W., Newport, G. D., Slikker, W., and Holson. R. R. 1994. Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J. Pharmacol. Exper. Ther. 268:1571–1580.

    Google Scholar 

  33. Itzhak, Y., Gandia, C., Huang, P. L., and Ali, S. F. 1998. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J. Pharmacol. & Exp. Therapeut. 284:1040–1047.

    Google Scholar 

  34. Itzhak, Y. and Ali, S. F. 1996. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamineinduced neurotoxicity in vivo. J. Neurochem. 67:1770–1773.

    PubMed  Google Scholar 

  35. Tomac, A., Lindqvist, E., Lin, L. H., Ogren, S. O., Young, D., Hoffer, B. J., and Olson, L. 1995. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339.

    PubMed  Google Scholar 

  36. Bowyer, J. F., Tank. A. W., Newport, G. D., Slikker, W. J., Ali, S. F., and Holson, R. R. 1992. The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum. J. Pharmacol. & Exper. Therapeut. 260:817–824.

    Google Scholar 

  37. Miller, D. B. and O'Callaghan, J. P. 1994. Environment-, drug,-and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exper. Ther. 270:752–760.

    Google Scholar 

  38. Ricaurte, G. A., Guillery. R. W., Seiden, L. S., Schuster, C. R., and Moore, R. Y. 1982. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235:93–103.

    PubMed  Google Scholar 

  39. Caine, S. B. and Koob, G. F. 2000. Pretreatment with the dopamine agonist 7-OH-DPAT shifts the cocaine self-administration dose-effect function to the left under different schedules in the rat. Behav. Pharm. 6:333–347.

    Google Scholar 

  40. Wiener, H. L., Hashim, A., Lajtha, A., and Sershen, H. 1989. Chronic L-deprenyl does not alter the restoration of striatal dopamine in MPTP-lesioned mice. J. Neurosci. Res. 23:326–329.

    PubMed  Google Scholar 

  41. Waldmeier, P. C. and Felner, A. E. 1978. Deprenil, loss of selectivity for inhibition of b-type MAO after repeated treatment. Biochem. Pharmacol. 27:801–806.

    PubMed  Google Scholar 

  42. Gelowitz, D. L., Richardson, J. S., Wishart, T. B., Yu, P. H., and Lai, C. T. 1994. Chronic L-deprenyl or L-amphetamine: Equal cognitive enhancement, unequal MAO inhibition. Pharmacol. Biochem. Behav. 47:41–45.

    PubMed  Google Scholar 

  43. Ekstedt, B., Magyar, K., and Knoll, J. 1979. Does the B form selective monoamine oxidase inhibitor lose selectivity by longterm treatment? Biochem. Pharm. 28:919–923.

    PubMed  Google Scholar 

  44. Tipton, K. F. and Singer, T. P. 1993. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. [Review] [155 refs]. J. Neurochem. 61: 1191–1206.

    PubMed  Google Scholar 

  45. Trulson, M. E., Cannon, M. S., Faegg, T. S., and Raese, J. D. 1985. Effects of chronic methamphetamine on the nigral-striatal dopamine system in rat brain: tyrosine hydroxylase immunochemistry and quantitative light microscopic studies. Brain Res. Bull. 15:569–577.

    PubMed  Google Scholar 

  46. Tatton, W. G. and Chalmers-Redman, R. M. 1996. Modulation of gene expression rather than monamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47:S171–S183.

    PubMed  Google Scholar 

  47. Gerlach, M., Youdim, M. B. H., and Riederer, P. 1996. Pharmacology of selegiline. Am. Acad. Neurol. 47: S137–S143.

    Google Scholar 

  48. Thiffault, C., Lamarra-Theroux, L., Quirion, R., and Poirier, J. 1997. L-deprenyl and MDL72974 do not improve the recovery of dopaminergic cells following systemic administration of MPTP in mouse. Brain Res. 44:238–244.

    Google Scholar 

  49. Yu, P. H., Davis, B. A., Fang, J., and Boulton, A. A. 1994. Neuroprotective effects of some monoamine oxidase-B inhibitors against DSP-4-induced noradrenaline depletion in the mouse hippocampus. J. Neurochem. 63:1820–1828.

    PubMed  Google Scholar 

  50. Finnegan, K. T., Skratt, J. J., Irwin, I., DeLanney, L. E., and Langston, J. W. 1990. Protection against DSP-4 induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Europ. J. Pharm. 184:119–126.

    Google Scholar 

  51. Salo, P. T. and Tatton, W. G. 1992. Deprenyl reduces the death of motoneurons caused by axotomy. J. Neurosci. Res. 31:394–400.

    PubMed  Google Scholar 

  52. Zeng, Y. C., Bongrani, S., Bronzetti, E., Cadel, S., Ricci, A., Valsecchi, B., and Amenta, F. 1995. Effect of long-term treatment with L-deprenyl on the age-dependent microanatomical changes in the rat hippocampus. Mech. Ageing Develop. 79:169–185.

    Google Scholar 

  53. Stoll, S., Hafner, U., Pohl, O., and Muller, W. E. 1994. Agerelated memory decline and longevity under treatment with selegiline. Life Sci. 55:2155–2163.

    PubMed  Google Scholar 

  54. Head, E., Hartley, J., Kameka, A. M., Mehta, R., Ivy, G. O., Rhehl, W. W., and Milgram, N. W. 1996. The effects of Ldeprenyl on spatial short term memory in young and aged dogs. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 20:515–530.

    Google Scholar 

  55. Knollema, S., Aukema, W., Hom, H., Korf, J., and Ter Horst, G. J. 1995. L-deprenyl reduces brain damage in rats exposed to transient hypoxia-ischemia. Stroke 26:1883–1887.

    PubMed  Google Scholar 

  56. Matsui, Y. and Kumagae, Y. 1991. Monoamine oxidase inhibitors prevent striatal neuronal necrosis induced by transient forebrain ischemia. Neurosci. Lett. 126:175–178.

    PubMed  Google Scholar 

  57. Semkova, I., Wolz, P., Schilling, M., and Krieglstein, J. 1996. Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Europ. J. Pharm. 315:19–30.

    Google Scholar 

  58. Fowler, J. S., Volkow, N. D., Logan, J., et al. 1994. Slow recovery of human brain MAO B after L-deprenyl (Selegiline) withdrawal. Synapse 18:86–93.

    PubMed  Google Scholar 

  59. Wu, R. M., Mohanakumar, K. P., Murphy, D. L., and Chiueh, C. C. 1994. Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (Selegiline). Ann. NY Acad. Sci. 738:214–221.

    PubMed  Google Scholar 

  60. Thiffault, C., Aumont, N., Quirion, R., and Poirier, J. 1995. Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J. Neurochem. 65:2725–2731.

    PubMed  Google Scholar 

  61. Carrillo, M. C., Kanai, S., Sato, Y., Nokubo, M., Ivy, G. O., and Kitani, K. 1993. The optimal dosage of (-)deprenl for increasing superoxide dismutase activities in several brain regions decreases with age in male fischer 344 rats. Life Sci. 52:1925–1934.

    PubMed  Google Scholar 

  62. Kitani, K., Miyasaka, K., Kania, S., Carillo, M. C., and Ivy, G. O. 1996. Upregulation of antioxidant enzyme activities by deprenyl. Ann. N.Y. Acad. Sci. 786:391–409.

    PubMed  Google Scholar 

  63. Tatton, W. G. and Chalmers-Redman, R. M. 1998. Mitochondria in neurodegenerative apoptosis: an opportunity for therapy? [Review] [82 refs]. Ann. Neurol. 44:S134–S141.

    PubMed  Google Scholar 

  64. Wadia, J. S., Chalmers-Redman, R. M. E., Ju, W. J. H., Carlile, G. W., Phillips, J. L., Fraser, A. D., and Tatton, W. G. 1998. Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J. Neurochem. 18:932–945.

    Google Scholar 

  65. Lai, C.-T. and Yu, P. H. 1997. R(-)-deprenyl potentiates dopamine-induced cytotoxicity toward catecholaminergic neuroblastoma SH-SY5Y cells. Toxicol. App. Pharmacol. 142:186–191.

    Google Scholar 

  66. The Parkinson Study Group. 1993. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. New England J. Med. 328:176–183.

    Google Scholar 

  67. Myllyla, V. V., Sotaniemi, K. A., Hakulinen, P., Maki-Ikola, O., and Heinonen, E. H. 1998. Selegiline as the primary treatment of Parkinson's disease—a long-term double-blind study. Acta Neurol. Scand. 95:211–218.

    Google Scholar 

  68. Olanow, C. W., Hauser, R. A., Gauger, L., Malapira, T., Koller, W., Hubble, J., Bushenbark, K., Lilienfeld, D., and Esterlitz, J. 1998. The effect of deprenyl and levodopa on the progression of Parkinson's disease. Ann. Neurol. 38:771–777.

    Google Scholar 

  69. Wrona, M. Z., Yang, Z., Zhang, F., and Dryhurst, G. 1997. Potential new insights into the molecular mechanisms of methamphetamine-induced neurodegeneration. NIDA Res. Monograph 173:146–174.

    Google Scholar 

  70. Romero-Ramos, M., Rodriguez-Gomez, J. A., Venero, J. L., Cano, J., and Machado, A. 1997. Chronic inhibition of the highaffinity dopamine uptake system increases oxidative damage to proteins in the aged rat substantia nigra. Free Radical Biol. Med. 23:1–7.

    Google Scholar 

  71. Fang, J. and Yu, P. H. 1994. Effect of L-deprenyl, its structural analogue and some monoamine oxidase inhibitors on dopamine uptake. Neuropharmacology 33:763–768.

    PubMed  Google Scholar 

  72. Heikkila, R. E., Cabbat, F. S., Manzino, L., and Duvoisin, R. C. 1981. Pontentiation by deprenil of L-Dopa induced circling in nigral-lesioned rats. Pharmacol. Biochem. Behav. 15:75–78.

    PubMed  Google Scholar 

  73. Knoll, J. 1992. The pharmacological profile of (-)deprenyl (selegiline) and its relevance for humans: A personal view. Pharmacol. & Toxicol. 70:317–321.

    Google Scholar 

  74. Dourish, C. T. 1982. A pharmacological analysis of the hyperactivity syndrome induced by beta-phenylethylamine in the mouse. Br. J. Pharmacol. 77:129–139.

    PubMed  Google Scholar 

  75. Sato, S., Tamura, A., Kitagawia, S., and Koshiro, A. 1997. A kinetic analysis of the effects of beta-phenylethylamine on the concentrations of dopamine and its metabolites in the rat striatum. Journal of Pharmaceutical Sciences 86:487–496.

    PubMed  Google Scholar 

  76. Shannon, H. E. and DeGregorio, C. M. 1982. Self-administration of the endogenous trace animes beta-phenylethylamine, N-methyl phenylethylamine and phenylethanolamine in dogs. J. Pharmacol. Exper. Ther. 222:52–60.

    Google Scholar 

  77. Yu, P. H., Davis, B. A., Durden, D. A., Barber, A., Terleckyj, I., Nicklas, W. G., and Boulton, A. A. 1994. Neurochemical and neuroprotective effects of some aliphatic propargylamines:new selective nonamphetamine-like monamine oxidase inhibitors. J. Neurochem. 62:697–704.

    PubMed  Google Scholar 

  78. Knoll, J. 1990. Nigrostriatal dopaminergic activity, (-) deprenyl treatment and longevity. Advan. Neurol. 53:425–429.

    PubMed  Google Scholar 

  79. Kopin, I. J. 1994. Neurotransmitters and disorders of the basal ganglia. Pages 899–918, in Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry Vol.5, Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasing, K., Azevedo, R., Karuppan, S. et al. Biphasic Effects of Selegiline on Striatal Dopamine: Lack of Effect on Methamphetamine-Induced Dopamine Depletion. Neurochem Res 26, 65–74 (2001). https://doi.org/10.1023/A:1007632700126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007632700126

Navigation