Skip to main content
Log in

Structure–Activity Relationship of Inhibition of Fish Feeding by Sponge-derived and Synthetic Pyrrole–Imidazole Alkaloids

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We investigated the relationship between the structures of pyrrole-containing alkaloids from marine sponges of the genus Agelas and their capacity to deter feeding by the omnivorous Caribbean reef fish, Thalassoma bifasciatum. Seven natural products were assayed at volumetric concentrations of 1, 5, and 10 mg/ml: dispacamide A, keramadine, oroidin, midpacamide, 4,5-dibromopyrrole-2-carboxylic acid, 4,5-dibromopyrrole-2carboxamide, and racemic longamide A. We also assayed 14 structural analogs obtained mostly by chemical synthesis. Of the seven natural products, only rac-longamide A was not significantly deterrent at any of the assay concentrations. The pyrrole moiety was required for feeding inhibition activity, while the addition of the imidazole group enhanced this activity. Variously functionalized imidazoles lacking the pyrrole moiety were not deterrent. Combinations of the natural products appeared to have an additive effect on feeding inhibition; there was no evidence of synergy. Given their high concentrations in sponge tissue, dispacamide A and oroidin most probably serve as the primary chemical defenses of many Agelas sp., while minor compounds such as keramadine are not present in high enough concentrations to contribute much to chemical defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Assmann, M., Lichte, E., Pawlik, J. R., and KÖck, M. 2000. Chemical defenses of the Caribbean sponges Agelas wiednemayeri and Agelas conifera. Submitted to Mar. Ecol. Prog. Ser.

  • Bailey, D. M., and Johnson, R. E. 1973. Pyrrole antibacterial agents. 2. 4,5-Dihalopyrrole-2-carboxylic acid derivatives. J. Med. Chem. 16:1300–1302.

    Google Scholar 

  • Braekman, J. C., Daloze, D., Moussiaux, B., Stoller, C., and Deneubourg, F. 1989. Sponge secondary metabolites: new results. Pure Appl. Chem. 61:509–512.

    Google Scholar 

  • Cafieri, F., Fattorusso, E., Mangoni, A., and Taglialatela-Scafati, O. 1995. Longamide and 3,7-dimethylisoguanine, two novel alkaloids from the marine sponge Agelas longissima. Tetrahedron Lett. 36:7893–7896.

    Google Scholar 

  • Cafieri, F., Fattorusso, E., Mangoni, A., and Taglialatela-Scafati, O. 1996. Dispacamides, anti-histamine alkaloids from Caribbean Agelas sponges. Tetrahedron Lett. 37:3587–3590.

    Google Scholar 

  • Cafieri, F., Carnuccio, R., Fattorusso, E., Taglialatela-Scafati, O., and Vallefuoco, T. 1997. Anti-histaminic activity of bromopyrrole alkaloids isolated from Caribbean Agelas spones. Bioorg. Med. Chem. Lett. 7:2283–2288.

    Google Scholar 

  • Cafieri, F., Fattorusso, E., and Taglialatela-Scafati, O. 1998. Novel bromopyrrole alkaloids from the sponge Agelas dispar. J. Nat. Prod. 61:122–125.

    Google Scholar 

  • Chanas, B., and Pawlik, J. R. 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser. 127:195–211.

    Google Scholar 

  • Chanas, B., Pawlik, J. R., Lindel, T., and Fenical, W. 1996. Chemical defense of the Caribbean sponge Agelas clathrodes. J. Exp. Mar. Biol. Ecol. 208:185–196.

    Google Scholar 

  • Chevolot, L., Padua, S., Ravi, B. N., Blyth, P. C., and Scheuer, P. J. 1977. Isolation of 1-methyl-4,5-dibromopyrrole-2-carboxylic acid and its 3′-(hydantoyl)propylamide (midpacamide) from a marine sponge. Heterocycles 7:891–894.

    Google Scholar 

  • De Nanteuil, G., Ahond, A., Guilhem, J., Poupat, C., Trans Huu Dau, E., Potier, P., Pusset, M., Pusset, J., and Laboute, P. 1985. Isolement et identification des metabolites d'une nouvelle espece de spongaire, Pseudaxinyssa cantharella. Tetrahedron 41:6019–6033.

    Google Scholar 

  • Duffy, J. E., and Paul, V. J. 1992. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339.

    Google Scholar 

  • Enriz, R. D., Baldoni, H. A., Jauregui, E. A., Sosa, M. E., Tonn, C. E., and Giordano, O. S. 1994. Structure-activity relationship of clerodane diterpenoids acting as antifeeding agents. J. Agric. Food Chem. 42:2958–2963.

    Google Scholar 

  • Fathi-Afshar, R., and Allen, T. M. 1988. Biologically active metabolites from Agelas mauritiana. Can. J. Chem. 66:45–50.

    Google Scholar 

  • Faulkner, D. J. 1998. Marine natural products. Nat. Prod. Rep. 15:113–158.

    Google Scholar 

  • Forenza, S., Minale, L., and Riccio, R. 1971. New bromopyrrole derivatives from the sponge Agelas oroides. J. Chem. Soc. Chem. Commun. 1971:1129–1130.

    Google Scholar 

  • Gonzalez-Coloma, A., Guadano, A., Gutierrez, C., Cabrera, R., De La PeÑa, E., De La Fuente, G., and Reina, M. 1998. Antifeedant delphinium diterpenoid alkaloids. Structure-activity relationships. J. Agric. Food Chem. 46:286–290.

    Google Scholar 

  • Gunasekera, S. P., Cranick, S., and Longley, R. E. 1989. Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis. J. Nat. Prod. 52:757–761.

    Google Scholar 

  • Hay, M. E., Piel, J., Boland, W., and Schnitzler, I. 1998. Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. Chemoecology 8:91–98.

    Google Scholar 

  • Hixon, M. A. 1983. Fish grazing and community structure of coral reefs and algae: A synthesis of recent studies, pp. 79–87, in M. S. Reaka (ed.). The Ecology of Deep and Shallow Coral Reefs. Symposia series for undersea research, NOAA /NURP, Washington, DC.

    Google Scholar 

  • JimÉnez, C., and Crews, P. 1994. Mauritamide A and accompanying oroidin alkaloids from the sponge Agelas mauritiana. Tetrahedron Lett. 35:1375–1378.

    Google Scholar 

  • KÖnig, G. M., Wright, A. D., and Linden, A. 1998. Antiplasmodial and cytotoxic metabolites from the maltese sponge Agelas oroides. Planta Med. 64:443–447.

    Google Scholar 

  • Lindel, T., and HochgÜrtel, M. 1998. The alkyne pathway to keramadine from the marine sponge Agelas sp. Tetrahedron Lett. 39:2541–2544.

    Google Scholar 

  • Lindel, T., and Hoffmann, H. 1997a. Synthesis of dispacamide from the maine sponge Agelas dispar. Tetrahedron Lett. 38:8935–8938.

    Google Scholar 

  • Lindel, T., and Hoffmann, H. 1997b. Synthesis of rac-midpacamide and the spiro-cyclization of its precursor. Liebigs Ann. Recueil 1997:1525–1528.

    Google Scholar 

  • Lindel, T., Junker, J., and KÖck, M. 1999. 2D-NMR-guided constitutional analysis of organic compounds employing the computer program COCON. Eur. J. Org. Chem. 1999:573–577.

    Google Scholar 

  • Mancini, I., Guella, G., Amade, P., Roussakis, C., and Pietra, F. 1997. Hanishin, a semiracemic, bioactive C9 alkaloid of the axinellid sponge Acanthella carteri from the Hanish Islands. A shunt metabolite? Tetrahedron Lett. 38:6271–6274.

    Google Scholar 

  • Meanwell, N. A., Roth, H. R., Smith, E. C. R., Wedding, D. L., and Wright, J. J. K. 1991. Diethyl 2,4-dioxoimidazoline-5-phosphonates: Horner-Wadsworth-Emmons reagents for the mild and efficient preparation of C-5 unsaturated hydantoin derivatives. J. Org. Chem. 56:6897–6904.

    Google Scholar 

  • Messchendorp, L., Gols, G. J. Z., and Van Loon, J. J. A. 1998. Behavioral effects and sensory detection of drimane deterrents in Myzus persicae and aphis gossypii nymphs. J. Chem. Ecol. 24:1433–1446.

    Google Scholar 

  • Moe, O. A., and Warner, D. T. 1949. 1,4 Addition reactions. III. The addition of cyclic imides to α,β-unsaturated aldehydes. A synthesis of β-alanine hydrochloride. J. Am. Chem. Soc. 71:1251–1253.

    Google Scholar 

  • Mullin, C. A., Gonzalez-Coloma, A., Gutierrez, C., Reina, M., Eichenseer, H., Hollister, B., and Chyb, S. 1997. Antifeedant effects of some novel terpenoids on chrysomelidae beetles: Comparisons with alkaloids on an alkaloid-adapted an nonadapted species. J. Chem. Ecol. 23:1851–1866.

    Google Scholar 

  • Nakamura, H., Ohizumi, Y., Kobayashi, J., and Hirata, Y. 1984. Keramadine, a novel antagonist of serotonergic receptors isolated from the Okinawan sea sponge Agelas sp. Tetrahedron Lett. 25:2475–2478.

    Google Scholar 

  • Pawlik, J. R. 1993. Marine invertebrate chemical defenses. Chem. Rev. 93:1911–1922.

    Google Scholar 

  • Pawlik, J. R., and Fenical, W. 1992. Chemical defense of Pterogorgia anceps, a Caribbean gorgonian coral. Mar. Ecol. Prog. Ser. 87:183–188.

    Google Scholar 

  • Pawlik, J. R., Burch, M. T., and Fenical, W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: A preliminary survey. J. Exp. Mar. Biol. Ecol. 108:55–66.

    Google Scholar 

  • Pawlik, J. R., Chanas, B., Toonen, R. J., and Fenical, W. 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127:183–194.

    Google Scholar 

  • Pennings, S. C., Pablo, S. R., Paul, V. J., and Duffy, E. 1994. Effects of sponge secondary metabolites in different diets on feeding by three groups of consumers. J. Exp. Mar. Biol. Ecol. 180:137–149.

    Google Scholar 

  • Randall, J. R., and Hartman, W. D. 1968. Sponge-feeding fishes of the West Indies. Mar. Biol. 1:216–225.

    Google Scholar 

  • Rogers, S. D., and Paul, V. J. 1991. Chemical defenses of three Glossodoris nudibranchs and their dietary Hyrtios sponges. Mar. Ecol. Prog. Ser. 77:221–232.

    Google Scholar 

  • Rowan, D. D., Hunt, M. B., and Gaynor, D. L. 1986. Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acromonium lolii. J. Chem. Soc. Chem. Commun. 1986:935–936.

    Google Scholar 

  • Tsukamoto, S., Kato, H., Hirota, H., and Fusetani, N. 1996. Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 52:8181–8186.

    Google Scholar 

  • Umeyana, A., Ito, S., Yuasa, E., Arihara, S., and Yamada, T. 1998. A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge Homaxinella sp. J. Nat. Prod. 61:1433–1434.

    Google Scholar 

  • Vervoort, H. C., Pawlik, J. R., and Fenical, W. 1998. Chemical defense of the Caribbean ascidian Didemnum conchyliatum. Mar. Ecol. Prog. Ser. 164:221–228.

    Google Scholar 

  • Walker, R. P., Faulkner, D. J., Van Engen, D., and Clardy, J. 1981. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J. Am. Chem. Soc. 103:6772–6773.

    Google Scholar 

  • Wilson, D. M., Puyana, M., Fenical, W., and Pawlik, J. R. 1999. Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. J. Chem. Ecol. 25:2811–2823.

    Google Scholar 

  • Yamazaki, T., Benedetti, E., Kent, D., and Goodman, M. 1994. Konformationsvoraussetzungen für den süssen Geschmack von Dipeptiden und Dipeptidmimetica. Angew. Chem. 106:1502–1517.

    Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindel, T., Hoffmann, H., Hochgürtel, M. et al. Structure–Activity Relationship of Inhibition of Fish Feeding by Sponge-derived and Synthetic Pyrrole–Imidazole Alkaloids. J Chem Ecol 26, 1477–1496 (2000). https://doi.org/10.1023/A:1005591826613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005591826613

Navigation