Skip to main content
Log in

On Mordell's Equation

  • Published:
Compositio Mathematica

Abstract

In an earlier paper we developed an algorithm for computing all integral points on elliptic curves over the rationals Q. Here we illustrate our method by applying it to Mordell's Equation y2=x3+k for 0 ≠ k ∈ Z and draw some conclusions from our numerical findings. In fact we solve Mordell's Equation in Z for all integers k within the range 0 < | k | ≤ 10 000 and partially extend the computations to 0 < | k | ≤ 100 000. For these values of k, the constant in Hall's conjecture turns out to be C=5. Some other interesting observations are made concerning large integer points, large generators of the Mordell–Weil group and large Tate–Shafarevič groups. Three graphs illustrate the distribution of integer points in dependence on the parameter k. One interesting feature is the occurrence of lines in the graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, B. J. and Stephens, N. M.: The parity of the rank of the Mordell-Weil group. Topology5 (1966) 295-299.

    Google Scholar 

  2. Birch, B. J. and Swinnerton-Dyer, H. P. F.: Notes on elliptic curves I and II. J. Reine Angew. Math.212 (1963) 7-15, 218 (1965) 79-208.

    Google Scholar 

  3. Brumer, A.: The average rank of elliptic curves I. Invent. Math. 109 (1992) 445-472.

    Google Scholar 

  4. Brumer, A. and McGuiness, O.: The behavior of the Mordell-Weil group of elliptic curves. Bull. Amer. Math. Soc. (N. S.)23 (1990) 375-382.

    Google Scholar 

  5. Cassels, J. W. S.: An introduction to the geometry of numbers. Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin und New York.

  6. Coates, J. and Wiles, A.: On the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977) 233-251.

    Google Scholar 

  7. Cremona, J. E.: Algorithms formodular elliptic curves. Cambridge University Press (1992).

  8. David, S.: Minorations de formes linéaires de logarithmes elliptiques. Mémoires de la SocietéMathématique de France, Numéro 62, Nouvelle série 1995. Supplément au Bulletin de la S. M. F. Tome 123, 1995, fascicule 3.

  9. Danilov, L. V.: The diophantine equation y 2- x 3 = k and a conjecture of M. Hall. (Russian), Mat. Zametki32 (1982) 273-275. Corr. 36 (1984) 457-458. Engl. transl.: Math. Notes32 617-618, 36 726.

    Google Scholar 

  10. Ellison, W. J., Ellison, F., Pesek, F., Stahl, C. E. and Stall, D. S.: The diophantine equation y 2 + k = x 3. J. Number Theory2 (1970) 310-321.

    Google Scholar 

  11. Fueter, R.: Über kubische diophantische Gleichungen. Comm. Math. Helv.2 (1930) 69-89.

    Google Scholar 

  12. Gebel, J.: Bestimmung aller ganzen und S-ganzen Punkte auf elliptischen Kurven über den rationalen Zahlen mit Anwendung auf die Mordellschen Kurven. PhD Thesis, Universität des Saarlandes, Saarbrücken 1996.

  13. Gebel, J., Pethő, A. and Zimmer, H. G.: Computing integral points on elliptic curves. Acta Arith. 68 (1994) 171-192.

    Google Scholar 

  14. Gebel, J., Pethő, A. and Zimmer, H. G.: Computing S-integral points on elliptic curves. Algorithmic Number Theory, Ed. H. Cohen in Proceedings ANTS-II, Bordeaux 1996, Lecture Notes in Comp. Sci., Vol. 1122 (1996) 157-171, Springer-Verlag.

  15. Gebel, J. and Zimmer, H. G.: Computing the Mordell-Weil group of an elliptic curve over ℚ. CRM Proc. and Lect. Notes4 (1994) 61-83.

    Google Scholar 

  16. Gordon, B. and Mohanty, S. P.: On a theorem of Delaunay and some related results. Pacific J. Math. 68 (1977) 399-409.

    Google Scholar 

  17. Grayson, D. R.: The arithmetic-geometric mean. Arch. Math. 52 (1989) 507-512.

    Google Scholar 

  18. Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72 (1983) 241-265.

    Google Scholar 

  19. Gross, B. and Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84 (1986) 225-320.

    Google Scholar 

  20. Hall, M.: The diophantine equation x 3 - y 2 = k. Computers in Number Theory, A. O. L. Atkin and B. J. Birch eds., Academic Press (1971) 173-198.

  21. Kolyvagin, V. A.: Finiteness of E (ℚ) and III for a subclass of Weil curves. (Russian) Izv. Acad. Nauk USSR52 (1988) 522-540.

    Google Scholar 

  22. Kolyvagin, V. A.: Euler Systems. The Grothendieck Festschrift, 2 Progr. in Math. 87 (1990) 474-499, Birkhäuser Boston.

    Google Scholar 

  23. Lal, M., Jones, M. F. and Blundon, W. J.: Numerical solutions of x 3 - y 2 = k. Math. Comp. 20 (1966), 322-325.

    Google Scholar 

  24. Lang, S.: Conjectured diophantine estimates on elliptic curves. Progr. in Math. 35 (1983) 155-171, Birkhäuser, Basel.

    Google Scholar 

  25. Lenstra, A. K., Lenstra, H. W. and Lovász, L.: Factoring polynomials with rational coeffi-cients. Math. Ann. 261 (1982) 515-534.

    Google Scholar 

  26. London, J. and Finkelstein, M.: On Mordell's Equation x 3 - y 2 = k. Bowling Green State University, Bowling Green, Ohio (1973).

    Google Scholar 

  27. Manin, Y. I.: Cyclotomic fields and modular curves. Russian Math. Surveys26(6) (1971) 7-78.

    Google Scholar 

  28. Mestre, J. F.: Formules explicites et minorations de conducteurs de variétés algébriques. Compos. Math. 58 (1986) 209-232.

    Google Scholar 

  29. Mordell, L. J.: Diophantine equations. Academic Press (1969) 238-254.

  30. Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 64 (1981) 455-470.

    Google Scholar 

  31. Rubin, K.: The work of Kolyvagin on the arithmetic of elliptic curves. Arith. of Compl. Manifolds, Proc., Lect. Notes in Math., Vol. 1399 (1988) 128-136, Springer-Verlag, Berlin und New York.

    Google Scholar 

  32. Silverman, J. H.: The difference between the Weil height and the canonical height on elliptic curves. Math. Comp. 55 (1990) 723-743.

    Google Scholar 

  33. Sprindžuk, V. G.: Classical diophantine equations. Lect. Notes in Math., Vol. 1559 (1993) 113, Springer-Verlag, Berlin und New York.

    Google Scholar 

  34. Stark, H. M.: Effective estimates of solutions of some diophantine equations, Acta Arith. 24 (1973) 251-259.

    Google Scholar 

  35. Steiner, R. P.: On Mordell's Equation x 3 - y 2 = k: a problem of Stolarsky. Math. Comp. 46 (1986) 703-714.

    Google Scholar 

  36. Steiner, R. P. and Mohanty, S. P.: On Mordell's Equation x 3 - y 2 = k. Indian J. Pure Appl. Math. 22 (1991) 13-21.

    Google Scholar 

  37. Stewart, C. L. and Top, J.: On ranks of twists of elliptic curves and power-free values of binary forms. J. Amer. Math. Soc. 8 (1995) 943-973.

    Google Scholar 

  38. Stroeker, R. J. and Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67 (1994), 177-196.

    Google Scholar 

  39. de Weger, B. M. M.: Algorithms for diophantine equations. Ph. D. Thesis, Centrum voor Wiskunde en Informatica, Amsterdam (1987).

    Google Scholar 

  40. Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. Modular Functions in One Variable IV, Lect. Notes in Math., Vol. 476 (1975) 33-52, Springer-Verlag, Berlin und New York.

    Google Scholar 

  41. Zagier, D.: Large integral points on elliptic curves. Math. Comp. 48 (1987) 425-436.

    Google Scholar 

  42. Zagier, D. and Kramarz, G.: Numerical investigations related to the L-series of certain elliptic curves. J. Indian Math. Soc. 52 (1987) 51-60, (Ramanujan Centennary volume).

    Google Scholar 

  43. Zimmer, H. G.: On Manin's conditional algorithm. Bull. Soc. Math. France, Mémoire 49-50 (1977) 211-224.

  44. Zimmer, H. G.: Generalization of Manin's conditional algorithm. SYMSAC 76. Proc. ACM Sympos. Symbolic Alg. Comp., Yorktown Heights, N. Y. (1976) 285-299.

  45. Zimmer, H. G.: A limit formula for the canonical height of an elliptic curve and its application to height computations. Number Theory. Ed. R. A. Mollin, W. de Gruyter Verlag, Berlin and New York (1990) 641-659.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebel, J., Pethö, A. & Zimmer, H.G. On Mordell's Equation. Compositio Mathematica 110, 335–367 (1998). https://doi.org/10.1023/A:1000281602647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000281602647

Navigation