Skip to main content
Log in

Simian Cytomegalovirus Encodes Five Rapidly Evolving Chemokine Receptor Homologues

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Many herpesviruses, poxviruses and retroviruses encode proteins related to chemokines and chemokine receptors. The first one discovered, US28 of human cytomegalovirus (HCMV), is a 7-transmembrane domain G protein-coupled chemokine receptor able to activate diverse cellular responses, including cell migration and gene expression. A related ORF named US27 is adjacent to US28, but no functions have been defined yet. Recently ORFs 3–7, a cluster of five concatenated ORFs with highest homology to US28 and mammalian chemokine receptors, were sequenced from a prototype “stealth virus”, an African green monkey simian CMV (SCMV)-related entity with unusual fungal, bacterial and mammalian gene homologues. Stealth viruses have not yet been independently replicated in tissue culture, and therefore their biological significance remains unclear. ORF3, ORF4, ORF5 and ORF6 are complete ORFs whereas the sequence of ORF7 is incomplete. In the present study, we identified five corresponding ORFs in the genome of a clinical isolate of bonafide simian CMV (SCMV), strain 9610. We found substantial differences between the SCMV and “stealth virus” ORFs, especially for ORF5 where there are 31% non-identities at the amino acid level. Four conserved genes unrelated to chemokines (64K/CAP, DNBI, UL32, and IE2) in SCMV and HCMV had on average 52% identity at the deduced amino acid level, whereas the corresponding values for the SCMV ORFs versus US28 ranged from 21% to 30%, suggesting rapid gene diversification in this cluster. Consistent with this, the amino acid identity for any pairwise comparison among the SCMV ORFs is only 21–52%. The chemokine receptor homologues are estimated to comprise ∼2–3% of the SCMV genome. HCMV US27 and US28 homologues have also been identified in the chimpanzee CMV genome, whereas mouse and rat CMV lack chemokine receptor homologues. This genomic analysis indicates that SCMV has an unusually high concentration of US28-related chemokine receptor homologues that have arisen by gene duplication and have diverged extensively from their closest relatives in mammals and other β herpesviruses. The rate of divergence appears to be very rapid compared to other known SCMV genes, suggesting strong positive selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy P.M., Pharmacol Rev 54, 227–229, 2002.

    Google Scholar 

  2. McFadden G., and Murphy P.M., Curr Opin Microbiol 3, 371–378, 2000.

    Google Scholar 

  3. Pease J.E., and Murphy P.M., Semin Immunol 10, 169–178, 1998.

    Google Scholar 

  4. Murphy P.M., Nat Immunol 2, 116–122, 2001.

    Google Scholar 

  5. Ahuja S.K., Gao J.L., and Murphy P.M., Immunol Today 15, 281–287, 1994.

    Google Scholar 

  6. Parcells M.S., Lin S.F., Dienglewicz R.L., Majerciak V., Robinson D.R., Chen H.C., Wu Z., Dubyak G.R., Brunovskis P., Hunt H.D., Lee L.F., and Kung H.J., J Virol 75, 5159–5173, 2001.

    Google Scholar 

  7. Gao J.L., and Murphy P.M., J Biol Chem 269, 28539–28542, 1994.

    Google Scholar 

  8. Beisser P.S., Grauls G., Bruggeman C.A., and Vink C., J Virol 73, 7218–7230, 1999.

    Google Scholar 

  9. Beisser P.S., Vink C., Van Dam J.G., Grauls G., Vanherle S.J., and Bruggeman C.A., J Virol 72, 2352–2363,1998.

    Google Scholar 

  10. Arvanitakis L., Geras-Raaka E., Varma A., Gershengorn M.C., and Cesarman E., Nature 385, 347–350, 1997.

    Google Scholar 

  11. Schwarz M., and Murphy P.M., J Immunol 167, 505–513, 2001.

    Google Scholar 

  12. Cesarman E., Mesri E.A., and Gershengorn M.C., J Exp Med 191, 417–422, 2000.

    Google Scholar 

  13. Guo H.G., Browning P., Nicholas J., Hayward G.S., Tschachler E., Jiang Y.W., Sadowska M., Raffeld M., Colombini S., Gallo R.C., and Reitz M.S. Jr., Virology 228, 371–378, 1997.

    Google Scholar 

  14. Yang T.Y., Chen S.C., Leach M.W., Manfra D., Homey B., Wiekowski M., Sullivan L., Jenh C.H., Narula S.K., Chensue S.W., and Lira S.A., J Exp Med 191, 445–454, 2000.

    Google Scholar 

  15. Guo H.G., Sadowska M., Reid W., Tschachler E., Hayward G., and Reitz M., J Virol 77, 2631–2639, 2003.

    Google Scholar 

  16. Ahuja S.K., and Murphy P.M., J Biol Chem 268, 20691–20694, 1993.

    Google Scholar 

  17. Wakeling M.N., Roy D.J., Nash A.A., and Stewart J.P., J Gen Virol 82, 1187–1197, 2001.

    Google Scholar 

  18. Murphy P.M., J Clin Invest 105, 1515–1517, 2000.

    Google Scholar 

  19. Vink C., Beisser P.S., and Bruggeman C.A., Intervirology 42, 342–349, 1999.

    Google Scholar 

  20. Vink C., Beuken E., and Bruggeman C.A., J Virol 74, 7656–7665, 2000.

    Google Scholar 

  21. Pleskoff O., Treboute C., Brelot A., Heveker N., Seman M., and Alizon M., Science 276, 1874–1878, 1997.

    Google Scholar 

  22. Pleskoff O., Treboute C., and Alizon M., J Virol 72, 6389–6397, 1998.

    Google Scholar 

  23. Streblow D.N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., and Nelson J.A., Cell 99, 511–520, 1999.

    Google Scholar 

  24. Martin W.J., Exp Mol Pathol 69, 10–16, 2000.

    Google Scholar 

  25. Camarda G., Spinetti G., Bernardini G., Mair C., Davis-Poynter N., Capogrossi M.C., and Napolitano M., J Virol 73, 9843–9848, 1999.

    Google Scholar 

  26. Davis-Poynter N.J., Lynch D.M., Vally H., Shellam G.R., Rawlinson W.D., Barrell E.G., and Farrell H.E., J Virol 71, 1521–1529, 1997.

    Google Scholar 

  27. Murphy P.M., Cell 72, 823–826, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahagun-Ruiz, A., Sierra-Honigmann, A.M., Krause, P. et al. Simian Cytomegalovirus Encodes Five Rapidly Evolving Chemokine Receptor Homologues. Virus Genes 28, 71–83 (2004). https://doi.org/10.1023/B:VIRU.0000012265.33168.b5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VIRU.0000012265.33168.b5

Navigation