Skip to main content
Log in

Altered Oxidant–Antioxidant Profile in Canine Mammary Tumours

  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Mammary tumours are the most common neoplasms in female dogs. Oxidative stress arising due to overproduction of reactive oxygen species, coupled with altered antioxidant capacities has been implicated in the pathogenesis of all types of cancers. However, the extent of lipid peroxidation and the status of antioxidants in canine mammary tumours have not been investigated. The present study was designed to evaluate the oxidant–antioxidant profile in canine mammary tumours. Lipid peroxidation as evidenced by the formation of thiobarbituric acid-reactive substances, lipid hydroperoxides, and conjugated dienes, as well as the status of the antioxidants superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase, glutathione S-transferase and vitamin C, in tumour tissues of 25 bitches was estimated. Lipid peroxidation in tumour tissues was enhanced compared to the corresponding adjacent uninvolved tissues. This was accompanied by significant elevation in both enzymatic and non-enzymatic antioxidants. This study suggests that upregulation of antioxidants induced by lipid peroxidation confers a selective growth advantage to tumour cells over their adjacent normal counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, M.E., 1985. Methods in Enzymology , (Academic Press, New York)

  • Behrend, L., Henderson, G. and Zwacka, RM., 2003. Reactive oxygen species in oncogenic transformation. Biochemical Society Transactions, 31, 1441-1444

    Google Scholar 

  • Brodey, R.S., Goldschmidt, M.H. and Roszel, J.R., 1983. Canine mammary gland neoplasms. Journal of the American Animal Hospital Association, 19, 61-90

    Google Scholar 

  • Bryant, R.W., Simon, T.C. and Bailey, J.M., 1982. Role of glutathione peroxidase and monophosphate shunt in the platelet lipoxygenase pathway. Journal of Biological Chemistry, 257, 14937-14943

    Google Scholar 

  • Burcham, P.C., 1998. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis, 13, 287-305

    Google Scholar 

  • Capdevila, J.M., Morrow, J.D., Belosludtsev, Y Y., Beauchamp, D.R., DuBois, R.N. and Falck, J.R., 1995. The catalytic outcomes of the constitutive and the mitogen inducible isoforms of prostaglandin H synthetase are markedly affected by glutathione and glutathione peroxidase(s). Biochemistry, 34, 3325-3327

    Google Scholar 

  • Chandra Mohan, K.V.P. and Nagini, S., 2003. Dose-response effects of tomato Iycopene on lipid peroxidation and enzymic antioxidants in the hamster buccal pouch carcinogenesis model. Nutrition Research, 23, 1403-1416

    Google Scholar 

  • Chen, Y.K. and Lin, L.M., 1997. Evaluation of glutathione S-transferase activity in human buccal epithelial dysplasias and squamous cell carcinomas. International Journal of Oral Maxillofacial Surgery, 26, 205

    Google Scholar 

  • Cohen, D., Reif, J.S., Brodey, R.S. and Keiser, H., 1974. Epidemiological analysis of the most prevalent sites and types of canine neoplasia obtained in a veterinary hospital. Cancer Research, 34, 2859-2868

    Google Scholar 

  • Das, U.N., 2002. A radical approach to cancer. Medical Science Monitor, 8, 79-92

    Google Scholar 

  • Datta, K., Sinha, S. and Chattopadhyay, P., 2000. Reactive oxygen species in health and disease. The National Medical Journal of India, 13, 304-310

    Google Scholar 

  • Doroshow, J.H., 1995. Glutathione peroxidase and oxidative stress. Toxicology Letters, 82/83, 395-398

    Google Scholar 

  • Duck-Hee Kang, R.N., 2002. Oxidative stress, DNA damage, and breast cancer. AACN Clinical Issues, 13 , 540-549

    Google Scholar 

  • Ghalia, A.H.B. and Fouad, I.M., 2000. Glutathione and its metabolizing enzymes in patients with different benign and malignant diseases. Clinical Biochemistry, 33, 657-662

    Google Scholar 

  • Gouaze, V., Mirault, M-E., Carpentier, S., Salvayre, R., Levade, T. and Andrieu-Abadie, N., 2001. Glutathione proxidase-I overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Molecular Pharmacology, 60, 488-496

    Google Scholar 

  • Guo, M. and Hay, B.A., 1999. Cell proliferation and apoptosis. Current Opinion in Cell Biology, 11, 745752

    Google Scholar 

  • Habig, W.H., Pabst, M.J. and Jakoby, W.B., 1974. Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139

    Google Scholar 

  • Hodgson, E., 2001. In vitro human phase I metabolism of xenobiotics I: pesticides and related chemicals used in agriculture and public health. Journal of Biochemical and Molecular Toxicology, 15, 296-299

    Google Scholar 

  • Iscan, M., Coban, T., Cok, I., Bulbul, D., Eke, B.C. and Burgaz, S., 2002. The organochlorine pesticide residues and antioxidant enzyme activities in human breast tumours: is there any association? Breast Cancer Research and Treatment, 72, 173-182

    Google Scholar 

  • Jiang, Z.Y., Hunt, J.Y. and Wolf, S.P., 1992. Detection of lipid hydroperoxides using the Fox method. Annals of Biochemistry, 202, 384-389

    Google Scholar 

  • Kakkar, P.S., Das, B. and Viswanathan, P.N., 1984. A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21, 130-132

    Google Scholar 

  • Kumaraguruparan, R., Subapriya, R., Viswanathan, P. and Nagini, S., 2002. Tissue lipid peroxidation and antioxidant status in patients with adenocarcinoma of the breast. Clinica Chimica Acta, 325, 165-170

    Google Scholar 

  • Li, J.J., Colburn, N.H. and Oberley, L.W., 1998. Maspin gene expression in tumour suppressor induced by overexpressing manganese containing SOD cDNA in human breast cancer. Carcinogenesis, 19, 833-839

    Google Scholar 

  • Liu, R., Oberley, T.D. and Oberley, L.W 1997. Transfection and expression of MnSOD cDNA decreases tumour malignancy of human oral squamous carcinoma SCC-25 cells. Human Gene Therapy, 8, 585-595

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275

    Google Scholar 

  • Lu, S.C., 1999. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB Journal, 13, 1169-1183

    Google Scholar 

  • Lu, Y.P., Lou, Y.R., Yen, P., Newmark, H.L., Mirochnitchenka, O.J., Inouye, M. and Huang, M.T., 1997. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase. Cancer Research, 57, 1468-1474

    Google Scholar 

  • Matsui, A., Ikeda, T., Enomoto, K., Hosoda, K., Nakashima, H., Omaye, K., Watanabe, M., Hibi, T. and Kitajima, M., 1997. Increased formation of oxidative DNA damage. 8-Hydroxy 2′-deoxyguanosine in human breast cancer tissue and its relationship to GSTPI and COMT genotypes. Cancer Letters, 151 , 87-95

    Google Scholar 

  • Nieto, A., Perez-Alenza, M.D., Del Castillo, N, Tabanera, E., Castano, M. and Pena, L., 2003. BRCAI expression in canine mammary dysplasis and tumours: relationship with prognostic variables. Journal of Comparative Pathology, 128, 260-268

    Google Scholar 

  • Obrador, E., Navarro, J., Mompo, J., Asensi, M., Pellicer, J.A. and Estrela, J.M., 1997. Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo. Biochemical Journal, 325, 183-189

    Google Scholar 

  • Ochisi, K., Morimatsu, M., Tomizawa, N. and Syuto, B., 2001. Cloning and sequencing full length of canine Brca2 and Rad51 cDNA. Journal of Veterinary Medical Science, 63, 1103-1108

    Google Scholar 

  • Ohkawa, H., Ohishi, N. and Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Annals of Biochemistry, 95, 351-358

    Google Scholar 

  • Olea, N., Pazos, P. and Exposito, J., 1998. Inadvertent exposure to xenoestrogens. European Journal of Cancer Prevention, 7, 17-23

    Google Scholar 

  • Omaye, S.T., Turnbull, J.D. and Sauberlich, H.E., 1979. Methods in Enzymology , (Academic Press, New York)

  • Perez Alenza, M.D., Pena, L., del Castillo N. and, Nieto A.I., 2000. Factors influencing the incidence and prognosis of canine mammary tumours. Journal of Small Animal Practice, 41, 287-291

    Google Scholar 

  • Poot, M., Teubert, H., Rabinovitch, P.S. and Kavanagh, T.J., 1995. De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. Journal of Cellular Physiology, 163 , 555-560

    Google Scholar 

  • Portakal, O., Ozkaya, O., Inal, ME., Bozan, B., Kosan, M. and Sayek, I., 2000. Coenzyme QIO concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry, 33 , 279-284

    Google Scholar 

  • Ray, G. and Husain, S.A., 2002. Oxidants, antioxidants and carcinogenesis. Indian Journal of Experimental Biology, 40, 1213-1232

    Google Scholar 

  • Rao, K.S. and Recknagel, R.O., 1968. Early onset of lipid peroxidation in rat liver after carbon tetrachloride administration. Experimental Molecular Pathology, 9, 271-278

    Google Scholar 

  • Ripple, M.O. and Henry, W.F., 1997. Prooxidant antioxidant shift induced by androgen treatment of human prostate carcinoma cells. Journal of the National Cancer Institute, 89, 40-48

    Google Scholar 

  • Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W.G., 1973. Selenium: biochemical roles as a component of glutathione peroxidase. Science, 179, 588-590

    Google Scholar 

  • Rungsipipat, A., Tateyama, S., Yamaguchi, R., Uchida, K., Miyoshi, N. and Hayashi T., 1999. Immunohistochemical analysis of c-yes and c-erbB-2 oncogene products and p53 tumour suppressor protein in canine mammary tumours. Journal of Veterinary Medical Science, 61, 27-32

    Google Scholar 

  • Saydam, N., Kirb, A., Demir, O., Hazan, E., Oto, Ö., Saydam, O. and Ganer, G., 1997. Determination of glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues. Cancer Letters, 119, 13-19

    Google Scholar 

  • Sinha, K.A., 1972. Colorimetric assay of catalase. Annals of Biochemistry, 47, 389-394

    Google Scholar 

  • Skrzydlewska, E., Stankiewicz, A., Sulkowska, M., Sulkowski, S. and Kasacka, J., 2001. Antioxidant status and lipid peroxidation in colorectal cancer. Journal of Toxicological and Environmental Health, 64, 213-222

    Google Scholar 

  • Sorenmo, K., 2003. Canine mammary gland tumours. Veterinary Clinics Small Animal Practice, 33, 573596

    Google Scholar 

  • Zieba, M., Nowak, D., Suwalski, M., Piasecka, G., Grzelewska-Rzymowska, I., Tyminska, K., Kroczynska-Bednarek, J. and Kwiatkowska, S., 2001. Enhanced lipid peroxidation in cancer tissue homogenates in non-small cell lung cancer. Monaldi Archives of Chest Disease, 56, 110-114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaraguruparan, R., Balachandran, C., Murali Manohar, B. et al. Altered Oxidant–Antioxidant Profile in Canine Mammary Tumours. Vet Res Commun 29, 287–296 (2005). https://doi.org/10.1023/B:VERC.0000048499.38049.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VERC.0000048499.38049.4b

Navigation