Skip to main content
Log in

Synthesis of (azidomethyl)phenylboronic acids

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The synthesis of 2-, 3-, and 4-(azidomethyl)phenylboronic acids was carried out. The geometric and electronic structures were studied by quantum-chemical methods. The suggestion is made that there are weak intramolecular interactions between the boron atom and the nitrene nitrogen atom of the azido group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.

    Google Scholar 

  2. A. Suzuki, J. Organomet. Chem., 1999, 576, 147.

    Google Scholar 

  3. P. Lloyd-Williams and E. Giralt, Chem. Soc. Rev., 2001, 30, 145.

    Google Scholar 

  4. Metal-Catalyzed Cross-Coupling Reactions, Eds. F. Diederich and P. J. Stang, VCH, Weinhein, 1998, p. 49.

    Google Scholar 

  5. B. Tao and D. W. Boykin, Tetrahedron Lett., 2002, 43, 4955.

    Google Scholar 

  6. S. Hesse and G. Kirsch, Tetrahedron Lett., 2002, 43, 1213.

    Google Scholar 

  7. C. H. Oh, Y. M. Lim, and C. H. You, Tetrahedron Lett., 2002, 43, 4645.

    Google Scholar 

  8. P. Selles and R. Lett, Tetrahedron Lett., 2002, 43, 4621.

    Google Scholar 

  9. J. Wu, L. Wang, R. Fathi, and Z. Yang, Tetrahedron Lett., 2002, 43, 4395.

    Google Scholar 

  10. B. Tao, S. C. Goel, J. Singh, and D. W. Boykin, Synthesis, 2002, 8, 1043.

    Google Scholar 

  11. R. J. Lewis, Sax's Dangerous Properties of Industrial Materials, Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  12. R. E. Lenga, The Sigma-Aldrich Library of Chemical Safety, Sigma-Aldrich, Milwaukee, 1988.

    Google Scholar 

  13. D. M. T. Chan, K. L. Monaco, R.-P. Wang, and M. P. Winter, Tetrahedron Lett., 1998, 39, 2933.

    Google Scholar 

  14. D. A. Evans, J. L. Katz, and T. R. West, Tetrahedron Lett., 1998, 39, 2937.

    Google Scholar 

  15. J. P. Collman, M. Zhong, L. Zeng, and S. Costanzo, J. Org. Chem., 2001, 66, 1528.

    Google Scholar 

  16. P. S. Herradura, K. A. Pendola, and R. K. Guy, Org. Lett., 2000, 2, 2019.

    Google Scholar 

  17. J.-P. Finet, A. Yu. Fedorov, S. Combes, and G. Boyer, Curr. Org. Chem., 2002, 6, 597.

    Google Scholar 

  18. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.

    Google Scholar 

  19. E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 95, 351.

    Google Scholar 

  20. S. Bedel, G. Ulrich, and C. Picard, Tetrahedron Lett., 2002, 43, 1697.

    Google Scholar 

  21. A. Yu. Fedorov, F. Carrara, and J.-P. Finet, Tetrahedron Lett., 2001, 42, 5875.

    Google Scholar 

  22. H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 1997, 63, 7512.

    Google Scholar 

  23. J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy. A Guide for Chemists, Oxford University Press, New York, 1997, 314 pp.

    Google Scholar 

  24. S. Arimori, L. I. Bosch, C. J. Ward, and T. D. James, Tetrahedron Lett., 2002, 43, 911.

    Google Scholar 

  25. C. J. Ward, P. Patel, and T. D. James, J. Chem. Soc., Perkin Trans. 1, 2002, 462.

    Google Scholar 

  26. J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A. Wessling, and B. Singaram, Tetrahedron Lett., 2002, 43, 1139.

    Google Scholar 

  27. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136, 864.

    Google Scholar 

  28. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133.

    Google Scholar 

  29. A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557.

    Google Scholar 

  30. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Google Scholar 

  31. P. J. Stephens, F. J. Devlin, C. F. Chablowski, and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.

    Google Scholar 

  32. R. H. Hertwig and W. Koch, Chem. Phys. Lett., 1997, 268, 345.

    Google Scholar 

  33. M. Dewar, E. G. Zoebish, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

    Google Scholar 

  34. T. Murafuji, Y. Sugihara, T. Moriya, Y. Mikata, and S. Yano, N. J. Chem., 1999, 23, 683.

    Google Scholar 

  35. R. T. Hawkins and H. R. Snyder, J. Am. Chem. Soc., 1960, 82, 3863.

    Google Scholar 

  36. D. Yabroff, G. E. K. Branch, and B. Bettman, J. Am. Chem. Soc., 1934, 56, 1850.

    Google Scholar 

  37. H. R. Snyder, A. J. Reedy, and W. J. Lennanz, J. Am. Chem. Soc., 1958, 80, 835.

    Google Scholar 

  38. K. Torsell, Arkh. Kemi, 1957, 10, 507.

    Google Scholar 

  39. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.Y., Shchepalov, A.A., Bol"shakov, A.V. et al. Synthesis of (azidomethyl)phenylboronic acids. Russian Chemical Bulletin 53, 370–375 (2004). https://doi.org/10.1023/B:RUCB.0000030813.05424.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000030813.05424.1f

Navigation