Skip to main content
Log in

Osmolytes and Mechanisms Involved in Regulatory Volume Decrease Under Conditions of Sudden or Gradual Osmolarity Decrease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A decrease in external osmolarity results in cell swelling and the immediate activation of a mechanism to restore cell volume, known as regulatory volume decrease (RVD). When exposed to a gradual osmolarity decrease (GODE), some cells do not swell. This reflects the operation of an active regulatory process known as isovolumetric regulation (IVR). The mechanisms underlying IVR appear similar to those activated during RVD, namely the extrusion of K+, Cl, amino acids, and other organic molecules. A previous study has documented IVR in cerebellar granule neurons, parallel to an early efflux of taurine and Cl, whereas K+ efflux is delayed. In this work we briefly review the importance of amino acids in the mechanisms of cell volume control in the brain, with emphasis on IVR. We also present experiments showing the response to GODE in cerebellar astrocytes. The currents activated during GODE, recorded in the whole-cell configuration of the patch clamp technique, indicate the early activation of an anion current, followed by a more delayed cation current. A correlation between the time course of amino acid efflux during GODE and the occurrence or not of IVR in various cell types, suggest the importance of these osmolytes in the volume regulatory process in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lang, F., Busch, G. L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306.

    Google Scholar 

  2. Kimelberg, H. K. 1995. Current concepts of brain edema: Review of laboratory investigations. J. Neurosurg. 83:1051–1059.

    Google Scholar 

  3. Pasantes-Morales, H. 1996. Volume regulation in brain cells: Cellular and molecular mechanisms. Metab. Brain. Dis. 11:187–204.

    Google Scholar 

  4. Okada, Y. 1997. Volume expansion-sensing outward-rectifier Cl channel: Fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273:C755–C789.

    Google Scholar 

  5. Pasantes-Morales, H. and Morales-Mulia, S. 2000. Influence of calcium on regulatory volume decrease: Role of potassium channels. Nephron 86:414–427.

    Google Scholar 

  6. Sanchez-Olea, R., Moran, J., Schousboe, A., and Pasantes-Morales, H. 1991 Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci. Lett. 130:233–236.

    Google Scholar 

  7. Junankar, P. R. and Kirk, K. 2000. Organic osmolyte channels: A comparative view. Cell. Physiol. Biochem. 10:355–360.

    Google Scholar 

  8. Strange, K., Emma, F., and Jackson, P. S. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–C730.

    Google Scholar 

  9. Mongin, A. A. and Orlov, S. N. 2001. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology. 8:77–88.

    Google Scholar 

  10. Pasantes-Morales, H. and Franco, R. 2002. Influence of protein tyrosine kinases on taurine release. Cerebellum. 1:103–109.

    Google Scholar 

  11. Pasantes-Morales, H., Franco, R., Ochoa, L., and Ordaz, B. 2002. Osmosensitive release of neurotransmitter amino acids: Relevance and mechanisms. Neurochem. Res. 27:59–65.

    Google Scholar 

  12. Andrew, R. D. 1991. Seizure and acute osmotic change: Clinical and neurophysiological aspects. J. Neurol. Sci. 101:7–18.

    Google Scholar 

  13. Schwartzkroin, P. A., Baraban, S. C., and Hochman, D. W. 1998. Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res. 32:275–285.

    Google Scholar 

  14. Verbalis, J. G. and Gullans, S. R. 1991. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 567:274–282.

    Google Scholar 

  15. Sterns, R. H, Baer, J., Ebersol, S., Thomas, D., Lohr, J. W., and Kamm, D. E. 1993. Organic osmolytes in acute hyponatremia. Am. J. Physiol. 264:F833–F836.

    Google Scholar 

  16. Taylor, D. L., Davies, S. E., Obrenovitch, T. P., Doheny, M. H., Patsalos, P. N., Clark, J. B., and Symon, L. 1995. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem. 65:275–281.

    Google Scholar 

  17. Pasantes-Morales, H., Maar, T. E., and Moran, J. 1993. Cell volume regulation in cultured cerebellar granule neurons. J. Neurosci. Res. 34:219–224.

    Google Scholar 

  18. Pasantes-Morales, H., Murray, R. A., Lilja, L., and Moran, J. 1994. Regulatory volume decrease in cultured astrocytes: I. Potassium-and chloride-activated permeability. Am. J. Physiol. 266:C165–C171.

    Google Scholar 

  19. Pasantes-Morales, H., Murray, R. A., Sanchez-Olea, R., and Moran, J. 1996. Regulatory volume decrease in cultured astrocytes: II. Permeability pathway to amino acids and polyols. Am. J. Physiol. 266:C172–C178.

    Google Scholar 

  20. Basavappa, S., Huang, C. C., Mangel, A. W., Lebedev, D. V., Knauf, P. A., and Ellory, J. C. 1996. Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100. J. Neurophysiol. 76:764–769.

    Google Scholar 

  21. Strange, K. and Morrison, R. 1992. Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am. J. Physiol. 263:C412–C419.

    Google Scholar 

  22. Pasantes-Morales, H., Cardin, V., Morales-Mulia, S., and Quesada, O. 1998. Regulatory volume decrease in cultured brain cells: Rate limiting factors. Pages 43–56, in Okada, Y. (ed.), Cell volume regulation: The molecular mechanism and volume sensing machinery. Amsterdam: Elsevier Science.

    Google Scholar 

  23. Law, R. O. 1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim. Biophys. Acta. 1221:21–28.

    Google Scholar 

  24. Bothwell, J. H., Rae, C., Dixon, R. M., Styles, P., and Bhakoo, K. K. 2001. Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: Implications for brain oedema in vivo. J. Neurochem. 77:1632–1640.

    Google Scholar 

  25. Estevez, A. Y., O'Regan, M. H., Song, D., and Phillis, J. W. 1999. Effects of anion channel blockers on hyposmotically induced amino acid release from the in vivo rat cerebral cortex. Neurochem. Res. 24:447–452.

    Google Scholar 

  26. Solis, J. M., Herranz, A. S., Herreras, O., Lerma, J., and Martin del Rio, R. 1988. Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett. 91:53–58.

    Google Scholar 

  27. Pasantes-Morales, H., Franco, R., Torres-Marquez, M. E., Hernandez-Fonseca, K., and Ortega, A. 2000. Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: Contribution and mechanisms. Cell. Physiol. Biochem. 10:361–370.

    Google Scholar 

  28. Lohr, J. W. and Grantham, J. J. 1986. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J. Clin. Invest. 78:1165–1172.

    Google Scholar 

  29. Van Driessche, W., De Smet, P., Li, J., Allen, S., Zizi, M., and Mountian, I. 1997. Isovolumetric regulation in a distal nephron cell line (A6). Am. J. Physiol. 272:C1890–C1898.

    Google Scholar 

  30. Tuz, K., Ordaz, B., Vaca, L., Quesada, O., and Pasantes-Morales, H. 2001. Isovolumetric regulation mechanisms in cultured cerebellar granule neurons. J. Neurochem. 79:143–151.

    Google Scholar 

  31. Franco, R., Quesada, O., and Pasantes-Morales, H. 2000. Efflux of osmolyte amino acids during isovolumic regulation in hippocampal slices. J. Neurosci. Res. 61:701–711.

    Google Scholar 

  32. Lohr, J. W. and Yohe, L. 2000. Isovolumetric regulation of rat glial cells during development and correction of hypo-osmolality. Neurosci. Lett. 286:5–8.

    Google Scholar 

  33. Souza, M. M., Boyle, R. T., and Lieberman, M. 2000. Different physiological mechanisms control isovolumetric regulation and regulatory volume decrease in chick embryo cardiomyocytes. Cell. Biol. Int. 24:713–721.

    Google Scholar 

  34. Godart, H., Ellory, J. C., and Motais, R. 1999. Regulatory volume response of erythrocytes exposed to a gradual and slow decrease in medium osmolality. Pflugers Arch. 437:776–779.

    Google Scholar 

  35. McManus, M., Fischbarg, J., Sun, A., Hebert, S., and Strange, K. 1993. Laser light-scattering system for studying cell volume regulation and membrane transport processes. Am. J. Physiol. 265:C562–C570.

    Google Scholar 

  36. Olson, J. E. and Li, G. Z. 1997. Increased potassium, chloride, and taurine conductances in astrocytes during hypoosmotic swelling. Glia. 20:254–261.

    Google Scholar 

  37. Kimelberg, H. K., Anderson, E., and Kettenmann, H. 1990. Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes: II. Whole-cell currents. Brain Res. 529:262–268.

    Google Scholar 

  38. Olson, J. E. 1999. Osmolyte contents of cultured astrocytes grown in hypoosmotic medium. Biochim. Biophys. Acta. 1453:175–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordaz, B., Tuz, K., Ochoa, L.D. et al. Osmolytes and Mechanisms Involved in Regulatory Volume Decrease Under Conditions of Sudden or Gradual Osmolarity Decrease. Neurochem Res 29, 65–72 (2004). https://doi.org/10.1023/B:NERE.0000010434.06311.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010434.06311.18

Navigation