Skip to main content
Log in

Thermophilic Microbial Communities of Deep-Sea Hydrothermal Vents

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The most recent publications on the phylogenetic and functional diversity of thermophilic prokaryotes inhabiting thermal deep-sea environments are reviewed. Along with a general physicochemical characterization of the biotope studied, certain adaptation mechanisms are discussed that are peculiar to the microorganisms inhabiting it. A separate chapter addresses the phylogenetic analysis of deep-sea hydrothermal microbial communities and uncultivated microorganisms recently discovered therein using molecular biological techniques. Physiological groups of thermophilic microorganisms found in deep-sea hydrothermal vents are considered: methanogens, sulfate-, iron-, and sulfur-reducers, aerobic hydrogen-oxidizing prokaryotes, aerobic and anaerobic organotrophs. In most cases, the isolates represent novel taxons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lutz, R.A., Shank, T.M., Fornari, D.J., Haymon, R.M., Lilley, M.D., Von Damm, K.L., and Desbruyeres, D., Rapid Growth at Deep-Sea Vents, Nature (London), 1994, vol. 371, pp. 663–664.

    Google Scholar 

  2. Taylor, C.D., Wirsen, C.O., and Gaill, F., Rapid Microbial Production of Filamentous Sulfur Mats at Hydrothermal Vents, Appl. Environ. Microbiol., 1999, vol. 65,no. 5, pp. 2253–2255.

    Google Scholar 

  3. Jannasch, H.W. and Mottl, M.J., Geomicrobiology of Deep-Sea Hydrothermal Vents, Science, 1985, vol. 229, pp. 717–725.

    Google Scholar 

  4. Karl, D.M., The Microbiology of Deep-Sea Hydrothermal Vents, Boka Raton: CRC, 1995.

    Google Scholar 

  5. Biologiya gidrotermal'nykh sistem (Biology of Hydrothermal Systems), Gebruk, A.V., Ed., Moscow, 2002.

  6. Delaney, J.R., Kelly, D.S., Lilley, M.D., Butterfield, D.A., Baross, J.A., Wilcock, W.S.D., Embley, R.W., and Summit, M., The Quantum Event of Oceanic Crustal Accretion: Impacts of Diking at Mid-Ocean Ridges, Science, 1998, vol. 281, pp. 222–230.

    Google Scholar 

  7. Prieur, D., Hydrothermal Vents: Prokaryotes in Deep-Sea Hydrothermal Vents, Encyclopedia of Environmental Microbiology, New York: Wiley, 2002, pp. 1617–1628.

    Google Scholar 

  8. Deming, J.W. and Baross, J.A., Deep-Sea Smokers: Windows to a Subsurface Biosphere, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3219–3230.

    Google Scholar 

  9. Erauso, G., Reysenbach, A.L., Godfroy, A., Meunier, J.R., Crump, B., Partensky, F., Baross, J.A., Marteinsson, V.T., Barbier, G., Pace, N., and Prieur, D., Pyrococcus abyssi sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Arch. Microbiol., 1993, vol. 160, pp. 338–349.

    Google Scholar 

  10. Zhao, H., Wood, A.G., Widdel, F., and Bryant, M.P., An Extremely Thermophilic Methanococcus from a Deep Sea Hydrothermal Vent and Its Plasmid, Arch. Microbiol., 1988, vol. 150, pp. 178–183.

    Google Scholar 

  11. Miller, J.F., Shah, N.N., Nelson, C.M., Ludlow, J.M., and Clark, D.S., Pressure and Temperature Effects on Growth and Methane Production of the Extreme Thermophile Methanococcus jannaschii, Appl. Environ. Microbiol., 1988, vol. 54,no. 12, pp. 3039–3042.

    Google Scholar 

  12. Marteinsson, V.T., Birrien, J.-L., Reysenbach, A.-L., Vernet, M., Marie, D., Gambacorta, A., Messner, P., Sleytr, U., and Prieur, D., Thermococcus barophilus sp. nov., a New Barophilic and Hyperthermophilic Archaeon Isolated under High Hydrostatic Pressure from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 351–359.

    Google Scholar 

  13. Blöch, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., Pyrolobus fumarii, gen. and sp. nov., Represents a Novel Group of Archaea, Extending the Upper Temperature Limit for Life to 113°C, Extremophiles, 1997, vol. 1, pp. 14–21.

    Google Scholar 

  14. Grogan, D.W., The Question of DNA Repair in Hyperthermophilic Archaea, Trends Microbiol., 2000, vol. 8,no. 4, pp. 180–189.

    Google Scholar 

  15. Reysenbach, A.-L. and Shock, E., Merging Genomes with Geochemistry in Hydrothermal Ecosystems, Science, 2002, vol. 296, pp. 1077–1082.

    Google Scholar 

  16. Llanos, J., Capasso, C., Parisi, E., Prieur, D., and Jeanthon, C., Susceptibility to Heavy Metals and Cadmium Accumulation in Aerobic and Anaerobic Thermophilic Microorganisms Isolated from Deep-Sea Hydrothermal Vents, Curr. Microbiol., vol. 41, pp. 201–205.

  17. Childress, J.J. and Fisher, C.R., The Biology of Hydrothermal Vent Animals: Physiology, Biochemistry and Autotrophic Symbioses, Oceanogr. Mar. Biol. Animal Rev., 1992, vol. 30, pp. 337–441.

    Google Scholar 

  18. Campbell, B.J. and Cary, S.C., Characterization of a Novel Spirochete Associated with the Hydrothermal Vent Polychaete Annelid, Alvinella popmejana, Appl. Environ. Microbiol., 2001, vol. 67,no. 1, pp. 110–117.

    Google Scholar 

  19. Campbell, B.J., Jeanthon, C., Kostka, J.E., Luther, G.W., and Cary, S.C., Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched from Alvinella popmejana and Deep-Sea Hydrothermal Vents, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4566–4572.

    Google Scholar 

  20. Cary, S.C., Cottrell, M.T., Stein, J.L., Camacho, F., and Desbruyères, D., Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1124–1130.

    Google Scholar 

  21. Jeanthon, C., Molecular ecology of hydrothermal vent microbial communities, Antonie van Leeuwenhoek, 2000, vol. 77, pp. 117–133.

    Google Scholar 

  22. Cavanaugh, C.M., Wirsen, C.O., and Jannasch, H.W., Evidence for Methylotrophic Symbionts in a Hydrothermal Vent Mussel from the Mid-Atlantic Ridge, Appl. Environ. Microbiol., 1992, vol. 58, pp. 3799–3803.

    Google Scholar 

  23. Moyer, C.L., Dobb, F.C., and Karl, D.M., Phylogenetic Diversity of the Bacterial Community from a Microbial Mat at an Active Hydrothermal Vent System, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1555–1562.

    Google Scholar 

  24. Haddad, A., Camacho, F., Durand, P., and Cary, S.C., Phylogenetic Characterization of the Epibiotic Bacteria Associated with the Hydrothermal Vent Polychaete Alvinella pompejana, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1679–1687.

    Google Scholar 

  25. Polz, M.F. and Cavanaugh, C.M., Dominance of One Bacterial Phylotype at a Mid-Atlantic Ridge Hydrothermal Vent Site, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7232–7236.

    Google Scholar 

  26. Cary, S.C., Cottrel, M.T., Stein, J.L., Camacho, F., and Desbruyeres, D., Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana, Appl. Environ. Microbiol., 1997, vol. 63,no. 3, pp. 1124–1130.

    Google Scholar 

  27. Corre, E., Reysenbach, A.-L., and Prieur, D., ɛ-Proteobacterial Diversity from a Deep-Sea Hydrothermal Vent on the Mid-Atlantic Ridge, FEMS Microbiol. Lett., 2001, vol. 205, pp. 329–335.

    Google Scholar 

  28. Reysenbach, A.L., Longnecker, K., and Kirshtein, J., Novel Bacterial and Archaeal Lineages from an In Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent, Appl. Environ. Microbiol., 2000, vol. 66, pp. 3798–3806.

    Google Scholar 

  29. Longenecker, K. and Reysenbach, A.-L., Expansion of Geographic Distribution of a Novel Lineage of ɛ-Proteobacteria to a Hydrothermal Vent Site on the Southern East Pacific Rise, FEMS Microbiol. Ecol., 2001, vol. 35, pp. 13–38.

    Google Scholar 

  30. Miroshnichenko, M.L. and Kostrikina, N.A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Nautilia lithotrophica gen. nov., sp. nov., a Thermophilic Sulfur-Reducing ɛ-Proteobacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol 52, pp. 1299–1304.

    Google Scholar 

  31. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassons, P., Ragnenes, G., Cueff, V., and Cambon-Bonavita, M.-A., Caminibacter hydrogenophilus gen. nov. sp. nov., a Novel Thermophilic Hydrogen-Oxidizing Bacterium Isolated from an East-Pacific Rise Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1317–1323.

    Google Scholar 

  32. Takai, K., Hydrothermal Vents: Biodiversity in Deep-Sea Hydrothermal Vents, Encyclopedia of Environmental Microbiology, New York: Wiley, 2002, pp. 1604–1616.

    Google Scholar 

  33. Marteinsson, V.T., Birrien, J.L., Kristjansson, J.K., and Prieur, D., First Isolation of Thermophilic Aerobic Non-Sporulating Heterotrophic Bacteria from Deep-Sea Hydrothermal Vents, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 163–174.

    Google Scholar 

  34. Marteinsson, V.T., Birrien, J.L., Jeanthon, C., and Prieur, D., Numerical Taxonomic Study of Thermophilic Bacillus Isolated from Three Geographically Separated Deep-Sea Hydrothermal Vents, FEMS Microbiol. Ecol., 1996, vol. 21, pp. 255–266.

    Google Scholar 

  35. Harmsen, H.J.M., Prieur, D., and Jeanthon, C., Distribution of Microorganisms in Deep-Sea Hydrothermal Vent Chimneys Investigated by Whole-Cell Hybridization and Enrichment Culture of Thermophilic Subpopulations, Appl. Environ. Microbiol., 1997, vol. 63, pp. 2876–2883.

    Google Scholar 

  36. Takai, K. and Horikoshi, K., Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments, Genetics, 1999, vol. 152, pp. 1285–1297.

    Google Scholar 

  37. Takai, K., Komatsu, T., Inagaki, F., and Horikoshi, K., Distribution of Archaea in a Black Smoker Chimney Structure, Appl. Environ. Microbiol., 2001, vol. 67,no. 8, pp. 1994–2007.

    Google Scholar 

  38. Teske, A., Hinrichs, K.-U., Edgcomb, V., Gomes, A., Kysela, D., Sylva, S., Sogin, M.L., and Jannasch, H.W., Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities, Appl. Environ. Microbiol., 2002, vol. 68,no. 4, pp. 1994–2007.

    Google Scholar 

  39. Garrity, G.M. and Holt, J.G., The Road Map to the Journal, Bergey's Manual of Systematic Bacteriology, Boone, D.R., Castenholz, R.W., Eds., New York: Springer, 2001, pp. 119–166.

    Google Scholar 

  40. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K.H., and Horikoshi, K., Isolation and Phylogenetic Diversity of Members of Previously Uncultivated ɛ-Proteobacteria in Deep-Sea Hydrothermal Fields, FEMS Microbiol. Lett., vol. 218, pp. 167–174.

  41. Takai, K., Nealson, K.H., and Horikoshi, K., Hydrogenimonas thermophilus, gen. nov., sp. nov., a Novel Thermophilic, Hydrogen-Oxidizing Chemolithoautotroph within Epsilon-Proteobacteria Isolated from a Black Smoker in a Central Indian Ridge Hydrothermal Field, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 25–32.

    Google Scholar 

  42. Miroshnichenko, M.L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E.A., Jeanthon, C., and Stackebrandt, E., Caminibacter profundus sp. nov., a Novel Thermophile in the Nautiliales ord. nov. within the Class “Epsilonproteobacteria” Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 41–45.

    Google Scholar 

  43. Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Pimenov, N.V., Tourova, T.P., Antipov, A.N., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Caldithrix abyssi gen. nov., sp. nov., a Nitrate-Reducing, Thermophilic, Anaerobic Bacterium Isolated from a Mid-Atlantic Ridge Hydrothermal Vent, Represents a Novel Bacterial Lineage, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 323–329.

    Google Scholar 

  44. Sievert, S.M., Kuever, J.M., and Muyzer, G., Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece), Appl. Environ. Microbiol., 2000, vol. 66, pp. 3102–3109.

    Google Scholar 

  45. Miroshnichenko, M.L., Hippe, H., Stackebrandt, E., Kostrikina, N., Chernych, N., Jeanthon, C., Nazina, T., Belyaev, S.S., and Bonch-Osmolovskaya, E.A., Isolation and Characterization of Thermococcus sibiricus sp. nov. from a Western Siberia High-Temperature Oil Reservoir, Extremophiles, 2001, vol. 5, pp. 85–91.

    Google Scholar 

  46. Miroshnichenko, M.L., Hippe, H., Fardeau, M.L., Bonch-Osmolovskaya, E.A., Stackebrandt, E., and Jeanthon, C., Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., Two Thermophilic Bacteria Isolated from a Continental Petroleum Reservoir in Western Siberia, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1715–1722.

    Google Scholar 

  47. Marteinsson, V.T., Isolation and Characterization of Thermus thermophilus Gy1211 from a Deep-Sea Hydrothermal Vent, Extremophiles, 1999, vol. 3, pp. 247–251.

    Google Scholar 

  48. McCollom, T.M. and Schock, E.L., Geochemical Constrains on Chemolithotrophic Metabolism by Microorganisms in Seafloor Hydrothermal Systems, Geochem. Cosmochim. Acta, 1997, vol. 61,no. 20, pp. 4375–4391.

    Google Scholar 

  49. Kurr, M., Huber, R., Konig, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O., Methanopyrus kandleri, gen. and sp. nov. Represents a Novel Group of Hyperthermophilic Methanogens, Growing at 110°C, Arch. Microbiol., 1991, vol. 156, pp. 239–247.

    Google Scholar 

  50. Jeanthon, C., L'Haridon, S., Reysenbach, A.-L., Vernet, M., Messner, P., Sleytr, U., and Prieur, D., Methanococcus infernus sp. nov., a Novel Hyperthermophilic Lithotrophic Methanogen Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 913–919.

    Google Scholar 

  51. Jeanthon, C., L'Haridon, S., Reysenbach, A.-L., Corre, E., Vernet, M., Messner, P., Sleytr, U., and Prieur, D., Methanococcus vulcanius sp. nov., a Novel Hyperthermophilic Methanogen Isolated from East Pacific Rise, and Identification of Methanococcus sp. DSM 4213T as Methanococcus fervens, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 583–589.

    Google Scholar 

  52. L'Haridon, S., Reysenbach, A.-L., Banta, A., Messner, P., Schumann, P., Stackebrandt, E., and Jeanthon, C., Methanocaldococcus indicus sp. nov., a Novel Hyperthermophilic Methanogen Isolated from the Central Indian Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1931–1935.

    Google Scholar 

  53. Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., and Wolfe, R.S., Methanococcus jannaschii sp. nov., an Extremely Thermophilic Methanogen from a Submarine Hydrothermal Vent, Arch. Microbiol., 1983, vol. 136, pp. 254–261.

    Google Scholar 

  54. Takai, K., Inoue, A., and Horikoshi, K., Methanothermococcus okinawensis sp. nov., a Thermophilic, Methane-Producing Archaeon Isolated from a Western Pacific Deep-Sea Hydrothermal Vent System, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1089–1095.

    Google Scholar 

  55. Bonch-Osmolovskaya, E.A., Pimenov, N.V., Rusanov, I.I., Miroshnichenko, M.L., and Jeanthon, C., Acetate Oxidation in Terrestrial and Deep-Sea Thermal Habitats, 4th Int. Congress of Extremophiles, 2002, Abstract P5.

  56. Jorgensen, B.B., Isaksen, M.F., and Jannasch, H.W., Bacterial Sulfate Reduction above 100°C in Deep-Sea Hydrothermal Vent Sediments, Science, 1992, vol. 258, pp. 1756–1757.

    Google Scholar 

  57. Burggraf, S., Jannasch, H.W., Nicolaus, B., and Stetter, K.O., Archaeoglobus profundus sp. nov. Represents a New Species within the Sulfate-Reducing Archaebacteria, Syst. Appl. Microbiol., 1990, vol. 13, pp. 24–28.

    Google Scholar 

  58. Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L., and Prieur, D., Thermodesulfobacterium hydrogeniphilum sp. nov., a Thermophilic Chemolithoautotrophic Sulfate-Reducing Bacterium Isolated from a Deep-Sea Hydrothermal Vent at Guaymas Basin, and Emendation of the Genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 765–772.

    Google Scholar 

  59. Mottle, M.J. and McConachy, T.F., Chemical Processes in Buoyant Hydrothermal Plumes on the East Pacific Rise Near 21° N, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1911–1927.

    Google Scholar 

  60. Fisher, F., Zillig, W., Stetter, K.O., and Schreiber, G., Chemolithotrophic Metabolism of Anaerobic Extremely Thermophilic Archaebacteria, Nature, 1983, vol. 301, pp. 511–513.

    Google Scholar 

  61. L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleutr, U.B., Prieur, D., and Jeanthon, C., Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a Novel Autotrophic Sulphur-Reducing Bacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 701–711.

    Google Scholar 

  62. Takai, K., Nakagawa, S., Sako, Y., and Horikoshi, K., Balnearium lithotrophicum gen. nov., sp. nov., a Novel Thermophilic, Strictly Anaerobic Hydrogen-Oxidizing Chemolithoautotroph Isolated from a Black Smoker Chimney in the Suiyo Seamount Hydrothermal System, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1947–1954.

    Google Scholar 

  63. Götz, D., Banta, A., Beveridge, T.G., Rushdi, A.I., Simoneit, B.R.T., and Reysenbach, A.-L., Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., Two Novel Thermophilic Hydrogen-Oxidizing Microaerophiles from Deep-Sea Hydrothermal Vents, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1349–1359.

    Google Scholar 

  64. Nakagawa, S., Takai, K., Horikoshi, K., and Sako, Y., Persephonella hydrogeniphila sp. nov., a Novel Thermophilic, Hydrogen-Oxidizing Bacterium from a Deep-Sea Hydrothermal Vent System, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 863–869.

    Google Scholar 

  65. Reysenbach, A.-L. and Cady, S., Microbiology of Ancient and Modern Hydrothermal Systems, Trends Microbiol., 2001, vol. 9,no. 2, pp. 79–86.

    Google Scholar 

  66. Reysenbach, A.-L., Banta, A.B., Boone, D.R., Cary, S.C., and Luther, G.W., Microbial Essentials at Hydrothermal Vents, Nature, 2000, vol. 404, p. 83.

    Google Scholar 

  67. Slobodkin, A., Campbell, B., Cary, S.C., Bonch-Osmolovskaya, E., and Jeanthon, C., Evidence for the Presence of Thermophilic Fe(III)-Reducing Microorganisms in Deep-Sea Hydrothermal Vents at 13° N (East Pacific Rise), FEMS Microbiol. Ecol., 2001, vol. 36, pp. 235–243.

    Google Scholar 

  68. Kashefi, K., Tor, J.M., Holmes, D.E., Gaw Van Praagh, C.V., Reysenbach, A.L., and Lovley, D.R., Geoglobus ahangari gen. nov., sp. nov., a Novel Hyperthermophilic Archaeon Capable of Oxidizing Organic Acids and Growing Autotrophically on Hydrogen with Fe(II) Serving as the Sole Electron Acceptor, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 719–728.

    Google Scholar 

  69. Miroshnichenko, M.L., L'Haridon, S., Slobodkin, A.I., Nercessian, O., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E.A., and Jeanthon, C., Deferribacter abyssi sp. nov., an Anaerobic Thermophile from Deep-Sea Hydrothermal Vents of the Mid-Atlantic Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1637–1641.

    Google Scholar 

  70. Sokolova, T.G., Gonzales, J., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., Bonch-Osmolovskaya, E.A., and Robb, F., Carboxydobrachium pacificum gen. nov., sp. nov., a New Anaerobic Thermophilic Carboxydotrophic Bacterium from Okinawa Trough, Int. J. Syst. Bacteriol., 2001, vol. 51, pp. 141–149.

    Google Scholar 

  71. Zillig, W. and Reysenbach, A.-L., Class IV. Thermococci Class Nov., Bergey's Manual of Systematic Bacteriology, 2nd Edition, Boone, D.R. and Castenholz, R.W., Eds., New York: Springer, 2001, vol. 1, pp. 342–346.

    Google Scholar 

  72. Fiala, G., Stetter, K.O., Jannasch, H.W., Langworthy, T.A., and Madon, J., Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98°C, Syst. Appl. Microbiol., 1986, vol. 8, pp. 106–113.

    Google Scholar 

  73. Pley, U., Schipka, J., Gambacorta, A., Jannasch, H.W., Fricke, H., Rachel, R., and Stetter, K.O., Pyrodictium abyssi sp. nov. Represents a Novel Heterotrophic Marine Archaeal Hyperthermophile Growing at 110°C, Syst. Appl. Microbiol., 1991, vol. 14, pp. 243–245.

    Google Scholar 

  74. Schonheit, P. and Schafer, T., Metabolism of Hyperthermophiles, World. J. Microbiol. Biotechnol., 1995, vol. 11, pp. 26–57.

    Google Scholar 

  75. Bonch-Osmolovskaya, E.A. and Miroshnichenko, M.L., Effect of Molecular Hydrogen and Elemental Sulfur on the Metabolism of the Extremely Thermophilic Archaebacteria of the genus Thermococcus, Mikrobiologiya, 1994, vol. 63, pp. 777–782.

    Google Scholar 

  76. Huber, R., Stöhr, J., Hohenhaus, S., Rachel, R., Burggraf, S., Jannasch, H.W., and Stetter, K.O., Thermococcus chitonophagus sp. nov., a Novel Chitin-Degrading, Hyperthermophilic Archaeum from a Deep-Sea Hydrothermal Vent Environment, Arch. Microbiol., 1995, vol. 164, pp. 255–264.

    Google Scholar 

  77. Antoine, E., Cilla, V., Meunier, J.R., Guezennec, J., Lesongeur, F., and Barbier, G., Thermosipho melanensis sp. nov., a New Thermophilic Anaerobic Bacterium Belonging to the Order Thermotogales, Isolated from Deep-Sea Hydrothermal Vents in the South-Western Pacific Ocean, Int. J. Syst. Evol. Microbiol., 1997, vol. 47, pp. 1118–1123.

    Google Scholar 

  78. Wery, N., Lesongeur, F., Pignet, P., Derennes, V., Cambon-Bonavita, M.-A., Godfroy, A., and Barbier, G., Marinitoga camini gen. nov., sp. nov., a Rod-Shaped Bacterium Belonging to the Order Thermotogales, Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 495–504.

    Google Scholar 

  79. Alain, K., Marteinsson, V.T., Miroshnichenko, M., Bonch-Osmolovskaya, E.A., Prieur, D., and Birrien, J.L., Marinitoga piezophila sp. nov., a Rod-Shaped, Thermo-Piezophilic Bacterium Isolated under High Hydrostatic Pressure from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1331–1339.

    Google Scholar 

  80. Harmsen, H.J.M., Prieur, D., and Jeanthon, C., Group-Specific 16S rRNA-Targeted Oligonucleotide Probes To Identify Thermophilic Bacteria in Marine Hydrothermal Vents, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4061–4068.

    Google Scholar 

  81. Slobodkin, A.I., Tourova, T.P., Kostrikina, N.A., Chernyh, N.A., Bonch-Osmolovskaya, E.A., Jeanthon, C., and Jones, B.E., Tepidibacter thalassicus gen. nov., sp. nov., a Novel Moderately Thermophilic, Anaerobic, Fermentative Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1131–1134.

    Google Scholar 

  82. Wery, N., Moricet, J.M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M.-A., and Barbier, G., Caloranaerobacter azorensis gen. nov., sp. nov., an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 1789–1796.

    Google Scholar 

  83. Alain, K., Pignet, P., Zbimden, M., Quillevere, M., Duchiron, F., Donval, J.-P., Lesongeur, F., Raguenes, G., Crassous, P., Querellou, J., and Cambon-Bonavita, M.-A., Caminicella sporogenes gen. nov., sp. nov., a Novel Thermophilic Spore-Forming Bacterium from an East-Pacific Rise Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1621–1628.

    Google Scholar 

  84. Huber, R., Jannasch, H.W., Rachel, R., Fuchs, T., and Stetter, K.O., Archaeoglobus veneficus sp. nov., a Novel Facultative Chemolithoautotrophic Hyperthermophilic Sulfite Reducer, Isolated from Abyssal Black Smokers, Syst. Appl. Microbiol., 1997, vol. 20, pp. 374–380.

    Google Scholar 

  85. Miroshnichenko, M.L., L'Haridon, S., Jeanthon, C., Antipov, A.N., Kostrikina, N.A., Tindall, B.J., Schumann, P., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Oceanithermus profundus gen. nov., sp. nov., a Thermophilic, Microaerophilic, Facultatively Chemolithoheterotrophic Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 53, pp. 747–752.

    Google Scholar 

  86. Miroshnichenko, M.L., L'Haridon, S., Nercessian, O., Antipov, A.N., Kostrikina, N.A., Tindall, B.J., Schumann, P., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E.A., and Jeanthon, C., Vulcanithermus mediatlanticus gen. nov., sp. nov., a Novel Member of the Family Thermaceae from a Deep-Sea Hot Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1143–1148.

    Google Scholar 

  87. Sako, Y., Satoshi Nakagawa, S., Takai, K., and Horikoshi, K., Marinithermus hydrothermalis gen. nov., sp. nov., a Strictly Aerobic, Thermophilic Bacterium from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 59–65.

    Google Scholar 

  88. L'Haridon, S., Reysenbach, A.-L., Clenat, P., Prieur, D., and Jeanthon, C., Hot Subterranean Biosphere in a Continental Oil Reservoir, Nature, 1995, vol. 337, pp. 223–224.

    Google Scholar 

  89. Barbier, G., Godfroy, A., Meunier, J.R., Querellou, J., Cambon, M.A., Lesongeur, F., Grimont, P.A., and Raguenes, G., Pyrococcus glycovorans sp. nov., a Hyperthermophilic Archaeon Isolated from the East Pacific Rise, Int. J. Syst. Evol. Microbiol., 1999, vol. 49, pp. 1829–1837.

    Google Scholar 

  90. Takai, K., Sugai, A., Itoh, T., and Horikoshi, K., Palaeococcus ferrophilus gen. nov., sp., nov., a Barophilic, Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 489–500.

    Google Scholar 

  91. Canganella, F., Jones, W.J., Gambacorta, A., and Antranikian, G., Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., Two Novel Thermophilic Archaea Isolated from the Guaymas Basin Hydrothermal Vent Site, Arch. Microbiol., 1997, vol. 167, pp. 233–238.

    Google Scholar 

  92. Duffaud, G.D., d'Hennezel, O.B., Peek, A.S., Reysenbach, A.L., and Kelly, R.M., Isolation and Characterization of Thermococcus barossii sp. nov., a Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent Flange Formation, Syst. Appl. Microbiol., 1998, vol. 21, pp. 40–49.

    Google Scholar 

  93. Fiala, G. and Stetter, K.O., Pyrococcus furiosus sp. nov. Represents a New Genus Marine Heterotrophic Archaebacteria Growing Optimally at 100°C, Arch. Microbiol., 1986, vol. 145, pp. 56–61.

    Google Scholar 

  94. Godfroy, A., Meunier, J.-R., Guezennec, J., Lesongeur, F., Raguenes, G., Rimbault, A., and Barbier, G., Thermococcus fumicolans sp. nov., a New Hyperthermophilic Archaeum Isolated from Deep-Sea Hydrothermal Vent in North Fiji Basin, Int. J. Syst. Evol. Microbiol., 1996, vol. 46, pp. 1113–1119.

    Google Scholar 

  95. Jolivet, E., L'Haridon, S., Corre, E., Forterre, P., and Prieur, D., Thermococcus gammatolerans sp. nov., a Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent That Resists Ionizing Radiation, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 847–851.

    Google Scholar 

  96. Godfroy, A., Lesongeur, F., Raguenes, G., Querellou, J., Antoine, E., Meunier, J.-R., Guezennec, J., and Barbier, G., Thermococcus hydrothermalis sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 1997, vol. 47, pp. 622–626.

    Google Scholar 

  97. Gonzalez, J.M., Kato, C., and Horikoshi, K., Thermococcus peptonophilus sp. nov., a Fast Growing, Extremely Thermophilic Archaebacterium Isolated From Deep-Sea Hydrothermal Vents, Arch. Microbiol., 1995, vol. 164, pp. 159–164.

    Google Scholar 

  98. Gonzales, J.M., Masuchi, Y., Robb, F.T., Ammerman, J.W., Maeder, D.L., Yanagibayashi, M., Tamaoka, J., and Kato, C., Pyrococcus horikoshii sp. nov., a New Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent at the Okinawa Trough, Extremophiles, 1998, vol. 2, pp. 123–130.

    Google Scholar 

  99. Grote, R., Li, L., Tamaoka, J., Horikoshi, K., and Antranikian, G., Thermococcus siculi sp. nov., a Novel Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent at the Mid-Okinawa Trough, Extremophiles, 1999, vol. 3, pp. 55–62.

    Google Scholar 

  100. Huber, R., Woese, C.R., Langworthy, T.A., Fricke, H., and Stetter, K.O., Thermosipho africanus gen. nov. Represents a New Genus of Thermophilic Eubacteria Within the “Thermotogales,” Syst. Appl. Microbiol., 1989, vol. 12, pp. 32–37.

    Google Scholar 

  101. Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T., and Horikoshi, K., Thermococcus profundus sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Syst. Appl. Microbiol., 1994, vol. 17, pp. 232–236.

    Google Scholar 

  102. Reysenbach, A.L. and Deming, J.W., Effects of Hydrostatic Pressure on the Growth of Hyperthermophilic Archaebacteria from the Juan De Fuca Ridge, Appl. Environ. Microbiol., 1991, vol. 57, pp. 1271–1274.

    Google Scholar 

  103. Sokolova, T.G., Gonzales, J., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermophilic CO-Oxidizing, H2-Producing Prokaryotes, 4th Int. Congress of Extremophiles, 2002, Abstract P275.

  104. Gal'chenko, V.F., Lein, A.Yu., Galimov, E.M., and Ivanov, M.V., Methanotrophic Bacterial Symbionts as the Primary Link of the Trophic Chain in the Ocean, Dokl. Akad. Nauk SSSR, 1988, vol. 300,no. 3, pp. 717–720.

    Google Scholar 

  105. Gal'chenko, V.F., Pimenov, N.V., Lein, A.Yu., Galkin, S.V., Miller, Yu.M., and Ivanov, M.V., Mixotrophic Type of Nutrition in Olgaconcha tufari Beck (Gastropoda: Prosobranchia) from an Active Hydrothermal Field of Manus Basin (Bismarck Sea), Dokl. Akad. Nauk SSSR, 1992, vol. 323,no. 3, pp. 776–781.

    Google Scholar 

  106. Pimenov, N.V., Savvichev, A.S., Gebruk, A.V., Moskalev, L.I., Lein, A.Yu., and Ivanov, M.V., Trophic Specialization of Shrimps in the Hydrothermal Community of TAG, Dokl. Akad. Nauk SSSR, 1992, vol. 323,no. 3, pp. 567–571.

    Google Scholar 

  107. Pimenov, N.V., Kalyuzhnaya, M.G., Khmelenina, V.M., Mityushina, L.L., and Trotsenko, Yu.A., Utilization of Methane and Carbon Dioxide by Symbiotrophic Bacteria in Gills of Mytilidae (Bathymodiolus) from the Rainbow and Logachev Hydrothermal Fields on the Mid-Atlantic Ridge, Mikrobiologiya, 2002, vol. 71,no. 5, pp. 681–689.

    Google Scholar 

  108. Kashefi, K. and Lovley, D., Extending the Upper Temperature Limit for Life, Science, 2003, vol. 301, p. 934.

    Google Scholar 

  109. Moussar, H., L'Haridon, S., Tindall, B.J., Banta, A., Schumann, P., Stackebrandt, E., Reysenbach, A.L., and Jeanthon, C., Thermodesulfatator indicus gen. nov., sp. nov., a Novel Thermophilic Chemolithoautotrophic Sulfate-Reducing Bacterium Isolated from the Central Indian Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 227–233.

    Google Scholar 

  110. Fardeau, M. L., Salinas, M.V., L'Haridon, S., Jeanthon, C., Verhe, F., Cayol, J-L., Patel, B. K., Garcia, J-L., and Olivier, B., Isolation from Oil Reservoirs of New Thermophilic Anaerobes Phylogenetically Related to Thermoanaerobacter subterraneus, T. yonseiensis, T. tengcongensis and Carboxydobrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov., with Creation of Four Subspecies, subterraneus, yonseiensis, tengcongensis, and pacificum sub-spp. nov., comb. nov., Int. J. Syst. Evol. Microbiol., 2003, Papers in Press, published online 13 October 2003. DOI 10.1099/ijs.0.02711-0.

  111. Nakagawa, S., Takai, K., Horikoshi, K., and Sako, Y., Aeropyrum camini sp.nov., a Strictly Aerobic Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2003, Papers (in press), published online 1 August 2003. DOI 10.1099/ijs.0.02826-0.

  112. Vertriani, C., Speck, M.D., Ellor, S.V., Lutz, R.A., and Starovoytov, V., Thermovibrio ammoniificans sp.nov., a Thermophilic, Chemolithotrophic, Nitrate Ammonifying Bacterium from Deep-Sea Hydrothermal Vents, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 175–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miroshnichenko, M.L. Thermophilic Microbial Communities of Deep-Sea Hydrothermal Vents. Microbiology 73, 1–13 (2004). https://doi.org/10.1023/B:MICI.0000016360.21607.83

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000016360.21607.83

Navigation