Skip to main content
Log in

Synthesis and Optical Properties of Anisotropic Metal Nanoparticles

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. P. Alivisatos (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226-13239.

    Google Scholar 

  2. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi (1997). J. Phys. Chem. B 101, 9463-9475.

    Google Scholar 

  3. M. A. Hines and P. Guyot-Sionnest (1996). J. Phys. Chem. 100, 468-471.

    Google Scholar 

  4. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science 294, 1901-1903.

    Google Scholar 

  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). J. Phys. Chem. B 107, 668-677.

    Google Scholar 

  6. S. Link and M. A. El-Sayed (1999). J. Phys. Chem. B 103, 8410-8426.

    Google Scholar 

  7. C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706-8715.

    Google Scholar 

  8. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos (1997). J. Am. Chem. Soc. 119, 7019-7029.

    Google Scholar 

  9. M. Gao, S. Kirstein, H. Möhwald, A. L. Rogach, A. Kornowski, A. Eychmuller, and H. Weller (1998). J. Phys. Chem. B 102, 8360-8363.

    Google Scholar 

  10. A. C. Templeton, W. P. Wuelfing, and R. W. Murray (2000). Acc. Chem. Res. 33, 27-36.

    Google Scholar 

  11. B. D. Busbee, S. O. Obare, and C. J. Murphy (2003). Adv. Mater. 15, 414-416.

    Google Scholar 

  12. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang (1999). Langmuir 15, 701-709.

    Google Scholar 

  13. A. Chemseddine and T. Moritz (1999). Eur. Inorg. Chem. 235-245.

  14. N. R. Jana, L. Gearheart, and C. J. Murphy (2001). Chem. Commun., 617-618.

  15. F. Kim, J. H. Song, and P. Yang (2002). J. Am. Chem. Soc. 124, 14316-14317.

    Google Scholar 

  16. Z. Tang, N. A. Kotov, and M. Giersig (2002). Science 297, 237-240.

    Google Scholar 

  17. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan (2003). Adv. Mater. 15, 353-389.

    Google Scholar 

  18. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang (1997). J. Phys. Chem. B 101, 6661-6664.

    Google Scholar 

  19. S. Chen, Z. Fan, and D. L. Carroll (2002). J. Phys. Chem. B 106, 10777-10781.

    Google Scholar 

  20. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schatz (2002). J. Am. Chem. Soc. 124, 15182-15183.

    Google Scholar 

  21. M. Maillard, S. Giorgio, and M.-P. Pileni (2002). Adv. Mater. 14, 1084-1086.

    Google Scholar 

  22. V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos (2002). J. Am. Chem. Soc. 124, 12874-12880.

    Google Scholar 

  23. M. Maillard, P. Huang, and L. Brus (2003). Nano Lett. 3, 1611-1615.

    Google Scholar 

  24. S. Chen and D. L. Carroll (2002). Nano Lett. 2, 1003-1007.

    Google Scholar 

  25. I. Pastoriza-Santos and L. M. Liz-Marzán (2002). Nano Lett. 2, 903-905.

    Google Scholar 

  26. Y. Sun, B. Mayers, and Y. Xia (2003). Nano Lett. 3, 675-679.

    Google Scholar 

  27. J. Yang and J. H. Fendler (1995). J. Phys. Chem 99, 5505-5511.

    Google Scholar 

  28. R. Jin, Y. Cao, E. Hao, G. Metraux, G. C. Schatz, and C. A. Mirkin (2003). Nature 425, 487-490.

    Google Scholar 

  29. S.-M. Lee, Y.-W. Jun, S. N. Cho, and J. Cheon (2002). J. Am. Chem. Soc. 124, 11244-11245

    Google Scholar 

  30. S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, and D. L., Carroll (2003). J. Am. Chem. Soc. 125, 16186-16187.

    Google Scholar 

  31. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos (2003). Nature Mater. 2, 382-385.

    Google Scholar 

  32. L. Manna, E. C. Scher, and A. P. Alivisatos (2000). J. Am. Chem. Soc. 122, 12700-12706.

    Google Scholar 

  33. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li (2004). Nano Lett. 4, 327-330.

    Google Scholar 

  34. Y. Sun and Y. Xia (2002). Science 298, 2139-2141.

    Google Scholar 

  35. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed (1996). Science 272, 1924-1926.

    Google Scholar 

  36. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas (1999). Appl. Phys. Lett. 75, 2897-2899.

    Google Scholar 

  37. J. B. Jackson and N. J. Halas (2001). J. Phys. Chem. B 105, 2743-2746.

    Google Scholar 

  38. C. Graf and A. v. Blaaderen (2002). Langmuir 18, 524-534.

    Google Scholar 

  39. E. Pordan and P. Nordlander (2003). Nano Lett. 3, 543-547.

    Google Scholar 

  40. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas (1998). Chem. Phys. Lett. 288, 243-247.

    Google Scholar 

  41. Y. Jin and S. Dong (2003). J. Phys. Chem. B 107, 12902-12905.

    Google Scholar 

  42. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed (2000). Chem. Phys. Lett. 317, 517-523.

    Google Scholar 

  43. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos (2000). Nature 404, 59-61.

    Google Scholar 

  44. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos (2002). Science 295, 2425-2427.

    Google Scholar 

  45. Y. Sun and Y. Xia (2002). Anal. Chem. 74, 5297-5305.

    Google Scholar 

  46. B. Nikoobakht, J. Wang, and M. A. El-Sayed (2002). Chem. Phys. Lett. 366, 17-23.

    Google Scholar 

  47. E. Hao and G. C. Schatz (2004). J. Chem. Phys. 120, 357-366.

    Google Scholar 

  48. Y. A. Sun and Y. N. Xia (2003). Adv. Mater. 15, 695-699.

    Google Scholar 

  49. G. S. Metraux, Y. C. Cao, R. C. Jin, and C. A. Mirkin (2003). Nano Lett. 3, 519-522.

    Google Scholar 

  50. S. O. Obare, N. R. Jana, and C. J. Murphy (2001). Nano Lett. 1, 601-603.

    Google Scholar 

  51. B. T. Draine and P. J. Flateau. User Guide for the Discrete Dipole Approximation DDSCAT.6.0, http://arxiv.org/abs/astro-ph0309069, with modifications described in W. H. Yang, G. C. 63 Schatz, and R. P. Van Duyne (1995). J. Chem. Phys. 103, 869-875.

    Google Scholar 

  52. T. Jensen, K. L. Kelly, A. Lazarides, and G. C. Schatz (1999). J. Cluster Sci. 10, 295-317.

    Google Scholar 

  53. K. L. Kelly, A. A. Lazarides, and G. C. Schatz (2001). Comput. Sci. Eng. 3, 67-73.

    Google Scholar 

  54. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung (1995). Phys. Rev. Lett. 75, 4772-4775.

    Google Scholar 

  55. P. D. Cozzoli, A. Kornowski, and H. Weller (2003). J. Am. Chem. Soc. 125, 14539-14548.

    Google Scholar 

  56. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon (2000). J. Am. Chem. Soc. 122, 8581-8582.

    Google Scholar 

  57. E. Hao, S. Li, R. C. Bailey, G. C. Schatz, and J. T. Hupp (2004). J. Phys. Chem. B 108, 1224-1229.

    Google Scholar 

  58. K. L. Kelly, T. R. Jensen, A. A. Lazarides, and G. C. Schatz (2001). in D. Feldheim and C. Foss (Ed.), Metal Nanoparticles: Synthesis, Characterization and Applications, Marcel-Dekker, New York, pp. 89-118.

    Google Scholar 

  59. E. Coronado and G. C. Schatz (2003). J. Chem. Phys. 119, 3926-3934.

    Google Scholar 

  60. E. D. Palik (1985). Handbook of Optical Constants of Solids, Academic Press, New York.

    Google Scholar 

  61. W. O. Milligan and R. H. Morriss (1964). J. Am. Chem. Soc. 86, 3461-3467.

    Google Scholar 

  62. G. Mie (1908). Ann. Phys. 25, 377-445.

    Google Scholar 

  63. L. Charnary, A. Lee, S. Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas (2003). J. Phys. Chem. B 107, 7327-7333.

    Google Scholar 

  64. G. C. Schatz (2001). J. Mol. Struc. (Theochem.) 573, 73-80.

    Google Scholar 

  65. G. C. Schatz (1984). Acc. Chem. Res. 17, 370-376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, E., Schatz, G.C. & Hupp, J.T. Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. Journal of Fluorescence 14, 331–341 (2004). https://doi.org/10.1023/B:JOFL.0000031815.71450.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000031815.71450.74

Navigation