Skip to main content
Log in

Species-Specific Response of Glucosinolate Content to Elevated Atmospheric CO2

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The carbon/nutrient balance hypothesis has recently been interpreted to predict that plants grown under elevated CO2 environments will allocate excess carbon to defense, resulting in an increase in carbon-based secondary compounds. A related prediction is that, because plant growth will be increasingly nitrogen-limited under elevated CO2 environments, plants will allocate less nitrogen to defense, resulting in decreased levels of nitrogen-containing secondary compounds. We present the first evidence of decreased investment in nitrogen-containing secondary compounds for a plant grown under elevated CO2. We also present evidence that plant response is species-specific and is not correlated with changes in leaf nitrogen content or leaf carbon–nitrogen ratio. When three crucifers were grown at 724 ± 8 ppm CO2, total foliar glucosinolate content decreased significantly for mustard, but not for radish or turnip. Glucosinolate content of the second and fourth youngest mustard leaves decreased by 45% and 31%, respectively. In contrast, no significant change in total glucosinolate content was observed in turnip or radish leaves, despite significant decreases in leaf nitrogen content. Total glucosinolate content differed significantly among leaves of different age; however, the trend differed among species. For both mustard and turnip, glucosinolate content was significantly higher in older leaves, while the opposite was true for radish. No significant CO2 × leaf age interaction was observed, suggesting that intraplant patterns of allocation to defense will not change for these species. Changes in nitrogen allocation strategy are likely to be species-specific as plants experience increasing atmospheric CO2 levels. The ecological consequences of CO2-induced changes in plant defensive investment remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AYRES, M. P. 1993. Plant defense, herbivory, and climate change, pp. 75–94. in P. M. Kareiva, J. G. Kingsolver, and R. B. Huey (eds.). Biotic Interactions and Global Change. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • BALDWIN, I. T., and OHNMEISS, T. E. 1994. Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris. Ecology 75:1003–1014.

    Google Scholar 

  • BAXTER, R., ASHENDEN, T. W., and FARRAR, J. F. 1994. Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use. J. Exp. Bot. 45:1267–1278.

    Google Scholar 

  • BAZZAZ, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annu.Rev. Ecol. Syst. 21:167–196.

    Google Scholar 

  • BENTLEY, B. L., and JOHNSON, N. D. 1991. Plants as food for herbivores: the roles of nitrogen fixation and carbon dioxide enrichment, pp. 257–272, in P. W. Price, T. M. Lewinsohn, G. W. Fernandas, and W. W. Benson (eds.). Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley & Sons, New York.

    Google Scholar 

  • BERNAYS, E. A. (ed.). 1992. Insect-Plant Interactions, Vol. IV. CRC Press, Boston.

    Google Scholar 

  • BLAU, P. A., FEENY, P., and CONTRADO, L. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance. Science 200:1296–1298.

    Google Scholar 

  • BRYANT, J. P., CHAPIN, F. S., and KLEIN, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Google Scholar 

  • CHEW, F. S. 1988a. Searching for defensive chemistry in the Cruciferae, or, do glucosinolates always control the interactions of Cruciferae with their potential herbivores and symbionts? No! pp. 81–112, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • CHEW, F. S. 1988b. Biological effects of glucosinolates, pp. 155–181, in H. G. Cutler (ed.). Biologically Active Natural Products for Potential Use in Agriculture. American Chemical Society, Washington, D.C.

    Google Scholar 

  • CHEW, F. S., and RENWICK, J. A. A. 1995. Chemical ecology of hostplant choice in Pieris butterflies, pp. 214–248, in R. T. Cardé, and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman and Hall, New York.

    Google Scholar 

  • COLEMAN, J. S., MC CONNAUGHAY, K. D. M., and BAZZAZ, F. A. 1993. Elevated CO2, and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93:195–200.

    Google Scholar 

  • DAVID, W. A., and GARDINER, B. O. 1962. Mustard oil glycosides as feeding stimulants for Pieris brassicae larvae in a semisynthetic diet. Bull. Entomol. Res. 53:91–109.

    Google Scholar 

  • DRAKE, B. G., LEADLEY, P. W., ARP, W. J., NASSIRY, D., and CURTIS, P. S. 1989. An open top chamber for field studies of elevated atmospheric CO2 concentration on salt marsh vegetation. Funct. Ecol. 3:363–371.

    Google Scholar 

  • EPRON, D., LIOZON, R., and MOUSSEAU, M. 1996. Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvalica) during the growing season. Tree Physiol. 16:425–432.

    Google Scholar 

  • ERICKSON, J. M., and FEENY, P. 1974. Sinigrin: A chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology 55:103–111.

    Google Scholar 

  • FAJER, E. D., BOWERS, M. D., and BAZZAZ, F. A. 1989. The effects of enriched carbon dioxide atmospheres on plant-herbivore interactions. Science 243:1198–1200.

    Google Scholar 

  • FAJER, E. D., BOWERS, M. D., and BAZZAZ, F. A. 1991. The effects of enriched CO2 atmospheres on the buckeye butterfly, Junonia coenia. Ecology 72:751–754.

    Google Scholar 

  • FAJER, E. D., BOWERS, M. D., and BAZZAZ, F. A. 1992. The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in Plantago: A test of the carbon/nutrient balance hypothesis. Am. Nat. 140:707–723.

    Google Scholar 

  • FEENY, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • FEENY, P. 1977. Defensive ecology of the Cruciferae. Ann. Mo. Bot. Gard. 64:221–234.

    Google Scholar 

  • FEENY, P., PAAUWE, K., and DEMONG, N. 1970. Flea beetles and mustard oils: Hostplant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol Soc. Am. 63:832–841.

    Google Scholar 

  • GATES, D. M. 1993. Climate Change and Its Biological Consequences. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • GRAEDEL, T. E., and CRUTZEN, P. 1993. Atmospheric Change: An Earth System Perspective. W. H. Freeman, New York.

    Google Scholar 

  • HEANEY, R. K., and FENWICK, G. R. 1981. A micro-column method for the rapid determination of total glucosinolate content of cruciferous material. Z. Pflanzenzuchtg. 87:89–95.

    Google Scholar 

  • HOLLEY, R. A., and JONES, J. D. 1985. The role of myrosinase in the development of toxicity toward Nematospora in mustard seed. Can. J. Bot. 63:521–526.

    Google Scholar 

  • HOUGHTON, J. T., JENKINS, G. J., and EPHRAUMS, J. J. 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • HUANG, X., RENWICK, J. A. A., and SACHDEV-GUPTA, K. 1994. Oviposition stimulants and deterrents control differential acceptance of Alliaria petiolata by Pieris rapae and P. napi oleracea. Chemoecology 5/6:79–87.

    Google Scholar 

  • JOHNSON, R. H., and LINCOLN, D. E. 1990. Sagebrush and grasshopper responses to atmospheric carbon dioxide. Oecologia 84:103–110.

    Google Scholar 

  • JULKUNEN-TIITTO, R., TAHVANAINEN, J., and SILVOLA, J. 1993. Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.). Oecologia 95:495–498.

    Google Scholar 

  • LARSEN, P. O. 1981. Glucosinolates, pp. 501–525, in E. E. Conn (ed.). The Biochemistry of Plants. Academic Press, New York.

    Google Scholar 

  • LAVOLA, A., and JULKUNEN-TIITTO, R. 1994. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315–321.

    Google Scholar 

  • LINCOLN, D. E., and D. COUVET. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78:112–114.

    Google Scholar 

  • LINCOLN, D. E., SIONIT, N., and STRAIN, B. 1984. Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ. Entomol. 13:1527–1530.

    Google Scholar 

  • LINDROTH, R. L., KINNEY, K. K., and PLATZ, C. L. 1993. Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance. Ecology 74:763–777.

    Google Scholar 

  • LOUDA, S., and MOLE, S. 1991. Glucosinolates: chemistry and ecology, pp. 123–164, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions With Secondary Plant Metabolites. Vol. I: The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • LOUDA, S., and RODMAN, J. 1983. Concentration of glucosinolates in relation to habitat and insect herbivory for the native crucifer, Cardamine cordifolia. Biochetn. Syst. Ecol. 11:199–207.

    Google Scholar 

  • MA, W. C., and SCHOONHOVEN, L. M. 1973. Tarsal chemosensory hairs of the large white butterfly Pieris brassicae and their possible role in oviposition behavior. Entomol. Exp. Appl. 16:343–357.

    Google Scholar 

  • MC CLOSKEY, C., and ISMAN, M. B. 1993. Influence of foliar glucosinolates in oilseed rape and mustard on feeding and growth of the Bertha armyworm, Mamestra configurata Walker. J.Chem. Ecol. 19:249–266.

    Google Scholar 

  • MC CONNAUGHAY, K. D. M., BERNSTON, G. M., and BAZZAZ, F. A. 1993. Limitations to CO2-induced growth enhancement in pot studies. Oecologia 94:550–557.

    Google Scholar 

  • MOONEY, H. A., DRAKE, B. G., LUXMOORE, R. J., OECHEL, W. C., and PITELKA, L. F. 1991. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience 41:96–104.

    Google Scholar 

  • PENUELAS, J., ESTIARTE, M., KIMBALL, B. A., IDSO, S. B., PINTER, P. J., WALL, G. W., GARCIA,R. L., HANSAKER, D. J., LAMORTE, R. L., and HENDRIX, D. L. 1996. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 47:1463–1467.

    Google Scholar 

  • PIVNICK, K. A., JARVIS, B. J., and SLATER, G. P. 1994. Identification of olfactory cues used in host-plant finding by diamondback moth, Plutella xyloslella (Lepidoptera: Plutellidae). J. Chem. Ecol. 20:1407–1427.

    Google Scholar 

  • REED, D. W., PIVNICK, K. A., and UNDERHILL, E. W. 1989. Identification of chemical oviposition stimulants for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae. Entomol. Exp. Appl. 53:277–286.

    Google Scholar 

  • RENWICK, J. A. A. 1988. Comparative mechanisms of host selection by insects attacking pine trees and crucifers, pp. 303–316, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • RENWICK, J. A. A. 1997. Diversity and dynamics of crucifer defenses against adults and larvae of cabbage butterflies, pp. 57–79, in J. T. Romeo, J. A. Saunders, and P. Barbosa (eds.). Phytochemical Diversity and Redundancy in Ecological Interactions. Plenum Press, New York.

    Google Scholar 

  • RHOADES, D. F., and CATES, R. G. 1976. Toward a general theory of plant anti-herbivore chemistry. Phytochemistry 10:168–213.

    Google Scholar 

  • RODMAN, J. E. 1981. Divergence, convergence, and parallelism in phytochemical characters: The glucosinolate-myrosinase system, pp. 43–79, in D. A. Young and D. A. Siegler (eds.). Phytochemistry and Angiosperm Phylogeny. Praeger, New York.

    Google Scholar 

  • RODMAN, J. E., and CHEW, F. S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. Biochem. Syst. Ecol. 8:43–50.

    Google Scholar 

  • ROMEO, J. T., SAUNDERS, J. A., and BARBOSA, P. (eds.). 1997. Phytochemical Diversity and Redundancy in Ecological Interactions. Plenum Press, New York.

    Google Scholar 

  • ROSENTHAL, G. A., and BERENBAUM, M. R. (eds.). 1991. Herbivores: Their Interactions with Secondary Plant Metabolites. Vol. I: The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • ROSENTHAL, G. A., and JANZEN, D. H. (eds.). 1979. Herbivores: Their Interaction with Secondary Plant Metabolites, Academic Press, New York.

    Google Scholar 

  • ROTHSCHILD, M. 1987. Speculations concerning the large white butterfly (Pieris brassicae L.): Do females assess the number of suitable host plants present? pp. 175–192, in R. F. Chapman, E. A. Bernays, and J. Stoffolano (eds.). Perspectives in Chemoreception and Behavior. Springer-Verlag, New York.

    Google Scholar 

  • SCHOONHOVEN, L. M. 1972. Secondary plant substances and insects. Phytochemistry 5:197–224.

    Google Scholar 

  • SCHOONHOVEN, L. M., and BLOM, F. 1988. Chemoreception and feeding behavior in a caterpillar: Towards a model of brain functioning in insects. Entomol. Exp. Appl. 49:123–129.

    Google Scholar 

  • SIEMENS, D. H., and MITCHELL-OLDS, T. 1996. Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): Consequences of concentration and induced resistance. Environ. Entomol. 25:1344–1353.

    Google Scholar 

  • SPENCER, K. C. (ed.). 1988. Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • STRAIN, B. R., and CURE, J. D. (eds.). 1985. Direct Effects of Increasing Carbon Dioxide on Vegetation. US Department of Energy DOE/ER-0238, Washington, D.C.

    Google Scholar 

  • VAN ETTEN, C. H., and H. L. TOOKEY. 1991. Chemistry and biological effects of glucosinolates, pp. 471–500, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Vol. I: The Chemical Participants. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karowe, D.N., Seimens, D.H. & Mitchell-Olds, T. Species-Specific Response of Glucosinolate Content to Elevated Atmospheric CO2 . J Chem Ecol 23, 2569–2582 (1997). https://doi.org/10.1023/B:JOEC.0000006667.81616.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006667.81616.18

Navigation